A pressure swing adsorption (PSA) hydrogen purification model for the four-component gas (H_(2)/CO_(2)/CH_(4)/CO=73/16/8/3 mol%) in a layered bed packed with Cu-BTC and zeolite 5A was established to achieve better hyd...A pressure swing adsorption (PSA) hydrogen purification model for the four-component gas (H_(2)/CO_(2)/CH_(4)/CO=73/16/8/3 mol%) in a layered bed packed with Cu-BTC and zeolite 5A was established to achieve better hydrogen purification performance.By comparing its simulation results with the experimental data,the adsorption isotherm model was validated and could be used to accurately describe the adsorption process of the gas mixture on the two adsorbents.The breakthrough curves of the mixed gas on the layered bed were studied to verify the correctness of the established simulation models.Based on the validated model,the performance of the PSA system based on the layered bed was carried out,including the hydrogen purity and recovery.The simulation results show that the hydrogen purification system based on the layered bed model can achieve hydrogen purity of 95.469% and hydrogen recovery of 83.219%.Moreover,a parametric study was carried out and its results show that reductions in feed flow rate and adsorption time result in an increase in hydrogen purity and a decrease in hydrogen recovery.A longer equalization time between the two adsorption beds can simultaneously increase the hydrogen purity and recovery.展开更多
近年来随着3D打印技术的飞速发展,材料挤出成型工艺制备功能梯度材料成为研究热点。材料之间的过渡是影响最终成型质量的关键因素。目前,国内外学者只研究了两种独立材料之间相互转变的过渡距离,对不同组分材料之间的转变研究较少。采...近年来随着3D打印技术的飞速发展,材料挤出成型工艺制备功能梯度材料成为研究热点。材料之间的过渡是影响最终成型质量的关键因素。目前,国内外学者只研究了两种独立材料之间相互转变的过渡距离,对不同组分材料之间的转变研究较少。采用双料筒打印机研究了不同组分材料之间的过渡距离,并通过实验探究不同进给量对过渡距离的影响,在保证打印质量的前提下得到了过渡距离最小的进给量。以Visual Studio 2019为开发平台提出一种新的进料策略缩短过渡距离,在路径规划中对切片得到点的材料信息进行判断,对组分增大的材料根据变化值计算其进给量并输出生成新型G代码。最终,采用新型G代码进行打印实验,缩短了材料过渡距离得到了理想的材料过渡曲线。展开更多
基金Funded by the National Key R&D Program of China (No.2021YFB2601603)the National Natural Science Foundation of China (Nos. 52176191, 51476120)+2 种基金the Science and Technology Innovation Project of Jianghan University (No. 2021kjzx005)the 111 Project (No. B17034)the Innovative Research Team Development Program of the Ministry of Education of China (No. IRT_17R83)。
文摘A pressure swing adsorption (PSA) hydrogen purification model for the four-component gas (H_(2)/CO_(2)/CH_(4)/CO=73/16/8/3 mol%) in a layered bed packed with Cu-BTC and zeolite 5A was established to achieve better hydrogen purification performance.By comparing its simulation results with the experimental data,the adsorption isotherm model was validated and could be used to accurately describe the adsorption process of the gas mixture on the two adsorbents.The breakthrough curves of the mixed gas on the layered bed were studied to verify the correctness of the established simulation models.Based on the validated model,the performance of the PSA system based on the layered bed was carried out,including the hydrogen purity and recovery.The simulation results show that the hydrogen purification system based on the layered bed model can achieve hydrogen purity of 95.469% and hydrogen recovery of 83.219%.Moreover,a parametric study was carried out and its results show that reductions in feed flow rate and adsorption time result in an increase in hydrogen purity and a decrease in hydrogen recovery.A longer equalization time between the two adsorption beds can simultaneously increase the hydrogen purity and recovery.
文摘近年来随着3D打印技术的飞速发展,材料挤出成型工艺制备功能梯度材料成为研究热点。材料之间的过渡是影响最终成型质量的关键因素。目前,国内外学者只研究了两种独立材料之间相互转变的过渡距离,对不同组分材料之间的转变研究较少。采用双料筒打印机研究了不同组分材料之间的过渡距离,并通过实验探究不同进给量对过渡距离的影响,在保证打印质量的前提下得到了过渡距离最小的进给量。以Visual Studio 2019为开发平台提出一种新的进料策略缩短过渡距离,在路径规划中对切片得到点的材料信息进行判断,对组分增大的材料根据变化值计算其进给量并输出生成新型G代码。最终,采用新型G代码进行打印实验,缩短了材料过渡距离得到了理想的材料过渡曲线。