Bedload sediment transport was estimated by the SEDTRANS96 model based on three-day hydrodynamics data obtained off the Dongfang coast in the Beibu Gulf during Typhoon Ketsana in September 2009. Bed- forms on the sea ...Bedload sediment transport was estimated by the SEDTRANS96 model based on three-day hydrodynamics data obtained off the Dongfang coast in the Beibu Gulf during Typhoon Ketsana in September 2009. Bed- forms on the sea floor off the Dongfang coast and internal structures of a typical dune were interpreted to evaluate storm influences on individual dunes and the dune field. Results indicated that flow forcings and related bedload transport were both strengthened significantly due to Typhoon Ketsana. The measurements and modeling results, which mainly included three different stages, presented noticeable phasic variation. The three stages were dominated by tidal current (Period I), tidal current combined with wind-induced waves (Period II), and swells combined with tidal current and seaward flows (Period III). This phasic varia- tion could be a common trait of hydrodynamics due to typhoons moving westwardly to the south of Hainan Island and Beibu Gulf in South China Sea. Results indicated that the maximum bedioad transport rate for every burst in Period III was almost 100 times larger than that in Period I and was ten times larger than that in Period II. However, the short-term increase in bedload transport induced by storms like Ketsana did not change the long-term evolution of dune morphology. Evidence was given by the internal structures of a typical dune, which revealed renewed modification under subsequent moderate conditions after storm ero- sion. Instead, storms may influence at different scales and regional allocation of sand dunes in some large areas because changes of the sea floor in large scales can hardly be recovered. More surveys during and after storm passage are also needed to document the level of positive contribution to forward migration.展开更多
在理想环境下,双双曲调频(dual hyperbolic frequency modulation,Dual-HFM)速度谱估计方法可得到高分辨率的连续多普勒估计结果。然而由多径、双目标环境引起的旁瓣干扰,削弱了速度谱方法抑制噪声的能力,影响目标参数估计。针对该方法...在理想环境下,双双曲调频(dual hyperbolic frequency modulation,Dual-HFM)速度谱估计方法可得到高分辨率的连续多普勒估计结果。然而由多径、双目标环境引起的旁瓣干扰,削弱了速度谱方法抑制噪声的能力,影响目标参数估计。针对该方法在多径、双目标等各种复杂水声环境中的应用,进行了深入的讨论,推导了多径、双目标造成的速度谱旁瓣位置,并提出了基于多帧信号的速度谱旁瓣抑制方法,利用另一维度信号空间中目标回波信息与多径杂波旁瓣的差异性,抑制了复杂水下环境中的速度谱旁瓣,并保留了速度谱计算量低的优点。通过数值仿真验证了所提方法的适用性,为低信噪比、多径、双目标环境下的多普勒估计提供了理论依据。展开更多
基金A CAS(Chinese Academy of Sciences)and CNOOC(China National Offshore Oil Corporation)collaborative research project
文摘Bedload sediment transport was estimated by the SEDTRANS96 model based on three-day hydrodynamics data obtained off the Dongfang coast in the Beibu Gulf during Typhoon Ketsana in September 2009. Bed- forms on the sea floor off the Dongfang coast and internal structures of a typical dune were interpreted to evaluate storm influences on individual dunes and the dune field. Results indicated that flow forcings and related bedload transport were both strengthened significantly due to Typhoon Ketsana. The measurements and modeling results, which mainly included three different stages, presented noticeable phasic variation. The three stages were dominated by tidal current (Period I), tidal current combined with wind-induced waves (Period II), and swells combined with tidal current and seaward flows (Period III). This phasic varia- tion could be a common trait of hydrodynamics due to typhoons moving westwardly to the south of Hainan Island and Beibu Gulf in South China Sea. Results indicated that the maximum bedioad transport rate for every burst in Period III was almost 100 times larger than that in Period I and was ten times larger than that in Period II. However, the short-term increase in bedload transport induced by storms like Ketsana did not change the long-term evolution of dune morphology. Evidence was given by the internal structures of a typical dune, which revealed renewed modification under subsequent moderate conditions after storm ero- sion. Instead, storms may influence at different scales and regional allocation of sand dunes in some large areas because changes of the sea floor in large scales can hardly be recovered. More surveys during and after storm passage are also needed to document the level of positive contribution to forward migration.
文摘在理想环境下,双双曲调频(dual hyperbolic frequency modulation,Dual-HFM)速度谱估计方法可得到高分辨率的连续多普勒估计结果。然而由多径、双目标环境引起的旁瓣干扰,削弱了速度谱方法抑制噪声的能力,影响目标参数估计。针对该方法在多径、双目标等各种复杂水声环境中的应用,进行了深入的讨论,推导了多径、双目标造成的速度谱旁瓣位置,并提出了基于多帧信号的速度谱旁瓣抑制方法,利用另一维度信号空间中目标回波信息与多径杂波旁瓣的差异性,抑制了复杂水下环境中的速度谱旁瓣,并保留了速度谱计算量低的优点。通过数值仿真验证了所提方法的适用性,为低信噪比、多径、双目标环境下的多普勒估计提供了理论依据。