Camelina(Camelina sativa)has emerged as a potential biofuel crop globally with its suitability even as a jet fuel source with 75–80%less greenhouse gas emissions compared to common petroleum fuels.The crop has origin...Camelina(Camelina sativa)has emerged as a potential biofuel crop globally with its suitability even as a jet fuel source with 75–80%less greenhouse gas emissions compared to common petroleum fuels.The crop has originated from Mediterranean region and belongs to Brassicaceae family.DIBER,DRDO has made initial and pioneer efforts in successful introduction of this crop to India and its agro-technology standardization.Being a short duration crop with lesser input requirement,it fits well in the cropping pattern of hilly states of Indian Himalaya.These areas experience fallow land due to shortage of irrigation water for growing other crops.The present study revealed that irrigation at flowering stage is more beneficial.Irrigation at this stage(if only one irrigation is available)exhibited grain yield of 1.004 kg·m^(-2)which was 21 and 80%higher over pod setting and rosette stage irrigation,respectively.The maximum seed yield was observed under treatment where irrigation was provided at all three crop growth stages(2.044 kg·m^(-2)).It was 50%higher over T6 treatment(where two irrigations were given at rosette and flowering stage)and 104%higher over T3(where only one irrigation was given at flowering stage).展开更多
Hippophae rhamnoides L.is a plant of immense ethnopharmacological importance and is a known source for various valuable biochemicals and nutraceuticals.The production of folate,a vitamin involved in several vital func...Hippophae rhamnoides L.is a plant of immense ethnopharmacological importance and is a known source for various valuable biochemicals and nutraceuticals.The production of folate,a vitamin involved in several vital functions,in this plant is rather poorly understood.Herein,we investigate the hypothesis that rhizobial bacteria serve the plant in this essential vitamin’s biosynthesis.Bacterial strains of Bacillus,Azorhizobium,Frankia,Paenibacillus,Brevibacillus and Pseudomonas,were isolated from the rhizosphere of the plant.HPLC and LCMS were used to trace the production of intra and extra-cellular folate by representative rhizospheric bacterial strains in vitro.From the seventeen functionally characterized bacterial strains of the plant’s rhizosphere,thirteen produced significant amounts of folate.Azorhizobium BR5401 produced the maximum amount of folic acid(424μg/mL),and Bacillus GY779 was the only strain capable of producing both intracellular and extra-cellular folic acid.The Open Reading Frame coding for dihydroneopterin aldolase,an enzyme involved in folate biosynthesis,was found in one of the representative isolates.Our experimental findings help us to suggest that the folate synthesized by rhizobial bacteria is transported to the plant,highlighting a significant benefit of coexistence.展开更多
Camelina is an oilseed crop which is being commercially produced globally as feedstock for biodiesel.Being a non-edible oil bearing low input crop owing to its low fertilizer and water requirement,fits well for biofue...Camelina is an oilseed crop which is being commercially produced globally as feedstock for biodiesel.Being a non-edible oil bearing low input crop owing to its low fertilizer and water requirement,fits well for biofuel production.In India,targets for biofuel blending has been set by New Biofuel Policy-2018 and to meet these targets efforts are being made to harness the potential of available feedstock in the country.Among these feedstock,contribution of short gestation oilseed bearing crop has been very important.Camelina has been introduced in India during 2009–10 as experimental crop by DIBER,DRDO.Since then various efforts have made to standardize the production technology of this crop under various agro-climatic regions of the country,crop improvement,oil quality analysis and development of high energy by-products.Camelina has various advantages to offer for Indian biofuel sector.This paper reviews the potential of this crop for Indian Biofuel scenario.展开更多
Bioadsorption phenomenon is more or less like a chemical reaction and several parameters are bound to affect the process. The pH, amount of adsorbent and agitation time influence the biosorptive potentiality. Hence, t...Bioadsorption phenomenon is more or less like a chemical reaction and several parameters are bound to affect the process. The pH, amount of adsorbent and agitation time influence the biosorptive potentiality. Hence, the present study on adsorption of Cr(VI) by activated Vetivera roots and Blue green algae Anabaena supports that it is an effective low cost adsorbent for the removal of Cr(VI) from plating effluent. Langmuir and Freundlich adsorption isotherm correlate the equilibrium adsorption data. In batch experiments both Vetiveria and Anabaena species were found to be cost effective biosorbent for the efficient removal of Cr(VI) from the effluent and comparatively Anabaena species was found to adsorb maximum Cr(VI) (88.86%) at a low contact time of 60 min. The data obtained from the experiments and modeling would prove useful in designing and fabricating an efficient treatment plant for Cr(VI) rich effluent.展开更多
基金This research was funded by the Defence Research&Development Organisation,Ministry of Defence,Govt of India.Contribution of all contributors has been acknowledged.
文摘Camelina(Camelina sativa)has emerged as a potential biofuel crop globally with its suitability even as a jet fuel source with 75–80%less greenhouse gas emissions compared to common petroleum fuels.The crop has originated from Mediterranean region and belongs to Brassicaceae family.DIBER,DRDO has made initial and pioneer efforts in successful introduction of this crop to India and its agro-technology standardization.Being a short duration crop with lesser input requirement,it fits well in the cropping pattern of hilly states of Indian Himalaya.These areas experience fallow land due to shortage of irrigation water for growing other crops.The present study revealed that irrigation at flowering stage is more beneficial.Irrigation at this stage(if only one irrigation is available)exhibited grain yield of 1.004 kg·m^(-2)which was 21 and 80%higher over pod setting and rosette stage irrigation,respectively.The maximum seed yield was observed under treatment where irrigation was provided at all three crop growth stages(2.044 kg·m^(-2)).It was 50%higher over T6 treatment(where two irrigations were given at rosette and flowering stage)and 104%higher over T3(where only one irrigation was given at flowering stage).
基金The authors are grateful to the Defense Research Development Organization(Project No.TC/2519/INM/-04/2012/CARS of INM 311/1.2)for the financial support and opportunity to carry out these studies.
文摘Hippophae rhamnoides L.is a plant of immense ethnopharmacological importance and is a known source for various valuable biochemicals and nutraceuticals.The production of folate,a vitamin involved in several vital functions,in this plant is rather poorly understood.Herein,we investigate the hypothesis that rhizobial bacteria serve the plant in this essential vitamin’s biosynthesis.Bacterial strains of Bacillus,Azorhizobium,Frankia,Paenibacillus,Brevibacillus and Pseudomonas,were isolated from the rhizosphere of the plant.HPLC and LCMS were used to trace the production of intra and extra-cellular folate by representative rhizospheric bacterial strains in vitro.From the seventeen functionally characterized bacterial strains of the plant’s rhizosphere,thirteen produced significant amounts of folate.Azorhizobium BR5401 produced the maximum amount of folic acid(424μg/mL),and Bacillus GY779 was the only strain capable of producing both intracellular and extra-cellular folic acid.The Open Reading Frame coding for dihydroneopterin aldolase,an enzyme involved in folate biosynthesis,was found in one of the representative isolates.Our experimental findings help us to suggest that the folate synthesized by rhizobial bacteria is transported to the plant,highlighting a significant benefit of coexistence.
基金Defence Research & Development Organisation (DRDO),India。
文摘Camelina is an oilseed crop which is being commercially produced globally as feedstock for biodiesel.Being a non-edible oil bearing low input crop owing to its low fertilizer and water requirement,fits well for biofuel production.In India,targets for biofuel blending has been set by New Biofuel Policy-2018 and to meet these targets efforts are being made to harness the potential of available feedstock in the country.Among these feedstock,contribution of short gestation oilseed bearing crop has been very important.Camelina has been introduced in India during 2009–10 as experimental crop by DIBER,DRDO.Since then various efforts have made to standardize the production technology of this crop under various agro-climatic regions of the country,crop improvement,oil quality analysis and development of high energy by-products.Camelina has various advantages to offer for Indian biofuel sector.This paper reviews the potential of this crop for Indian Biofuel scenario.
文摘Bioadsorption phenomenon is more or less like a chemical reaction and several parameters are bound to affect the process. The pH, amount of adsorbent and agitation time influence the biosorptive potentiality. Hence, the present study on adsorption of Cr(VI) by activated Vetivera roots and Blue green algae Anabaena supports that it is an effective low cost adsorbent for the removal of Cr(VI) from plating effluent. Langmuir and Freundlich adsorption isotherm correlate the equilibrium adsorption data. In batch experiments both Vetiveria and Anabaena species were found to be cost effective biosorbent for the efficient removal of Cr(VI) from the effluent and comparatively Anabaena species was found to adsorb maximum Cr(VI) (88.86%) at a low contact time of 60 min. The data obtained from the experiments and modeling would prove useful in designing and fabricating an efficient treatment plant for Cr(VI) rich effluent.