The spatial patterns and regional-scale surface air temperature (SAT) changes during the last millennium,as well as the variability of the East Asian summer monsoon (EASM) were simulated with a low-resolution vers...The spatial patterns and regional-scale surface air temperature (SAT) changes during the last millennium,as well as the variability of the East Asian summer monsoon (EASM) were simulated with a low-resolution version of Flexible Global Ocean-Atmosphere-Land-Sea-ice (FGOALS-gl) model.The model was driven by both natural and anthropogenic forcing agents.Major features of the simulated past millennial Northern Hemisphere (NH) mean SAT variations,including the Medieval Climate Anomaly (MCA),the Little Ice Age (LIA) and the 20th Century Warming (20CW),were generally consistent with the reconstructions.The simulated MCA showed a global cooling pattern with reference to the 1961-90 mean conditions,indicating the 20CW to be unprecedented over the last millennium in the simulation.The LIA was characterized by pronounced coldness over the continental extratropical NH in both the reconstruction and the simulation.The simulated global mean SAT difference between the MCA and LIA was 0.14°C,with enhanced warming over high-latitude NH continental regions.Consistencies between the simulation and the reconstruction on regional scales were lower than those on hemispheric scales.The major features agreed well between the simulated and reconstructed SAT variations over the Chinese domain,despite some inconsistency in details among different reconstructions.The EASM circulation during the MCA was stronger than that during the LIA The corresponding rainfall anomalies exhibited excessive rainfall in the north but deficient rainfall in the south.Both the zonal and meridional thermal contrast were enhanced during the MCA.This temperature anomaly pattern favored a stronger monsoon circulation.展开更多
To compare differences among the Medieval Warm Period (MWP), Little Ice Age (LIA), and 20th century global warming (20CW), six sets of transient and equilibrium simulations were generated using the climate system mode...To compare differences among the Medieval Warm Period (MWP), Little Ice Age (LIA), and 20th century global warming (20CW), six sets of transient and equilibrium simulations were generated using the climate system model FGOALS_gl. This model was developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences. The results indicate that MWP warming is evident on a global scale, except for at mid-latitudes of the North Pacific. However, the magnitude of the warming is weaker than that in the 20th century. The warming in the high latitudes of the Northern Hemisphere is stronger than that in the Southern Hemisphere. The LIA cooling is also evident on a global scale, with a strong cooling over the high Eurasian continent, while the cooling center is over the Arctic domain. Both the MWP and the 20CW experiments exhibit the strongest warming anomalies in the middle troposphere around 200-300 hPa, but the cooling center of the LIA experiment is seen in the polar surface of the Northern Hemisphere. A comparison of model simulation against the reconstruction indicates that model's performance in simulating the surface air temperature changes during the warm periods is better than that during the cold periods. The consistencies between model and reconstruction in lower latitudes are better than those in high latitudes. Comparison of the inter-annual variability mode of East Asian summer monsoon (EASM) rainfall during the MWP, LIA and 20CW reveals a similar rainfall anomalies pattern. However, the time spectra of the principal component during the three typical periods of the last millennium are different, and the quasi-biannual oscillation is more evident during the two warm periods. At a centennial time scale, the external mode of the EASM variability driven by the changes of effective solar radiation is determined by the changes of large scale land-sea thermal contrast. The rainfall anomalies over the east of 110°E exhibit a meridional homogeneous change pattern, which is different from the meridional out-of-phase change of rainfall anomalies associated with the internal mode.展开更多
Variations in global atmospheric oscillations during the last millennium are simulated using the climate system model FGOALS_gl. The model was driven by reconstructions of both natural forcing (solar variability and v...Variations in global atmospheric oscillations during the last millennium are simulated using the climate system model FGOALS_gl. The model was driven by reconstructions of both natural forcing (solar variability and volcanic aerosol) and anthropogenic forcing (greenhouse gases and sulfate aerosol). The model results are compared against proxy reconstruction data. The reconstructed North Atlantic Oscillation (NAO) was out of phase with the Pacific Decadal Oscillation (PDO) in the last millennium. During the Medieval Warm Period (MWP), the NAO was strong while the PDO was weak. During the Little Ice Age (LIA), the NAO was weak while the PDO was strong. A La Ni a-like state prevailed in the MWP, while an El Ni o-like state dominated in the LIA. This phenomenon is particularly obvious in the 15th, 17th and 19th centuries. Analysis of the model output indicates that the NAO was generally positive during 1000-1400 AD and negative during 1650-1900 AD. There is a discrepancy between the sim- ulation and reconstruction during 1400-1650 AD. The simulated PDO generally varies in parallel with the reconstruction, which has a negative phase during the MWP and a positive phase during the LIA. The correlation coefficient between the reconstruction and simulation is 0.61, and the correlation is statistically significant at the 1% level. Neither the La Ni a-like state of the MWP nor the El Ni o-like state of the LIA is reproduced in the model. Both the reconstructed and the simulated Antarctic Oscillations had a negative phase in the early period of the last millennium and a positive phase in the late period of the last millennium. The Asian-Pacific Oscillation was generally strong during the WMP and weak during the LIA, and the correlation coefficient between the simulation and reconstruction is 0.50 for the period 1000 -1985 AD. The analysis suggests that the specified external forcings significantly affected the evolution of atmospheric oscillation during the last millennium.展开更多
基金jointly supported by the National Natural Science Foundation of China (Grant No. 41305069)the Open Project Program of the Key Laboratory of Meteorological Disaster of Ministry of Education,Nanjing University of Information Science and Technologythe National Program on Key Basic Research Project of China (Grant No. 2010CB951904)
文摘The spatial patterns and regional-scale surface air temperature (SAT) changes during the last millennium,as well as the variability of the East Asian summer monsoon (EASM) were simulated with a low-resolution version of Flexible Global Ocean-Atmosphere-Land-Sea-ice (FGOALS-gl) model.The model was driven by both natural and anthropogenic forcing agents.Major features of the simulated past millennial Northern Hemisphere (NH) mean SAT variations,including the Medieval Climate Anomaly (MCA),the Little Ice Age (LIA) and the 20th Century Warming (20CW),were generally consistent with the reconstructions.The simulated MCA showed a global cooling pattern with reference to the 1961-90 mean conditions,indicating the 20CW to be unprecedented over the last millennium in the simulation.The LIA was characterized by pronounced coldness over the continental extratropical NH in both the reconstruction and the simulation.The simulated global mean SAT difference between the MCA and LIA was 0.14°C,with enhanced warming over high-latitude NH continental regions.Consistencies between the simulation and the reconstruction on regional scales were lower than those on hemispheric scales.The major features agreed well between the simulated and reconstructed SAT variations over the Chinese domain,despite some inconsistency in details among different reconstructions.The EASM circulation during the MCA was stronger than that during the LIA The corresponding rainfall anomalies exhibited excessive rainfall in the north but deficient rainfall in the south.Both the zonal and meridional thermal contrast were enhanced during the MCA.This temperature anomaly pattern favored a stronger monsoon circulation.
基金the National Natural Science Foundation of China (40890054)
文摘To compare differences among the Medieval Warm Period (MWP), Little Ice Age (LIA), and 20th century global warming (20CW), six sets of transient and equilibrium simulations were generated using the climate system model FGOALS_gl. This model was developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences. The results indicate that MWP warming is evident on a global scale, except for at mid-latitudes of the North Pacific. However, the magnitude of the warming is weaker than that in the 20th century. The warming in the high latitudes of the Northern Hemisphere is stronger than that in the Southern Hemisphere. The LIA cooling is also evident on a global scale, with a strong cooling over the high Eurasian continent, while the cooling center is over the Arctic domain. Both the MWP and the 20CW experiments exhibit the strongest warming anomalies in the middle troposphere around 200-300 hPa, but the cooling center of the LIA experiment is seen in the polar surface of the Northern Hemisphere. A comparison of model simulation against the reconstruction indicates that model's performance in simulating the surface air temperature changes during the warm periods is better than that during the cold periods. The consistencies between model and reconstruction in lower latitudes are better than those in high latitudes. Comparison of the inter-annual variability mode of East Asian summer monsoon (EASM) rainfall during the MWP, LIA and 20CW reveals a similar rainfall anomalies pattern. However, the time spectra of the principal component during the three typical periods of the last millennium are different, and the quasi-biannual oscillation is more evident during the two warm periods. At a centennial time scale, the external mode of the EASM variability driven by the changes of effective solar radiation is determined by the changes of large scale land-sea thermal contrast. The rainfall anomalies over the east of 110°E exhibit a meridional homogeneous change pattern, which is different from the meridional out-of-phase change of rainfall anomalies associated with the internal mode.
基金the National Natural Science Foundation of China (40890054)the National Key Technology R&D Program of China (2007BAC29B03)
文摘Variations in global atmospheric oscillations during the last millennium are simulated using the climate system model FGOALS_gl. The model was driven by reconstructions of both natural forcing (solar variability and volcanic aerosol) and anthropogenic forcing (greenhouse gases and sulfate aerosol). The model results are compared against proxy reconstruction data. The reconstructed North Atlantic Oscillation (NAO) was out of phase with the Pacific Decadal Oscillation (PDO) in the last millennium. During the Medieval Warm Period (MWP), the NAO was strong while the PDO was weak. During the Little Ice Age (LIA), the NAO was weak while the PDO was strong. A La Ni a-like state prevailed in the MWP, while an El Ni o-like state dominated in the LIA. This phenomenon is particularly obvious in the 15th, 17th and 19th centuries. Analysis of the model output indicates that the NAO was generally positive during 1000-1400 AD and negative during 1650-1900 AD. There is a discrepancy between the sim- ulation and reconstruction during 1400-1650 AD. The simulated PDO generally varies in parallel with the reconstruction, which has a negative phase during the MWP and a positive phase during the LIA. The correlation coefficient between the reconstruction and simulation is 0.61, and the correlation is statistically significant at the 1% level. Neither the La Ni a-like state of the MWP nor the El Ni o-like state of the LIA is reproduced in the model. Both the reconstructed and the simulated Antarctic Oscillations had a negative phase in the early period of the last millennium and a positive phase in the late period of the last millennium. The Asian-Pacific Oscillation was generally strong during the WMP and weak during the LIA, and the correlation coefficient between the simulation and reconstruction is 0.50 for the period 1000 -1985 AD. The analysis suggests that the specified external forcings significantly affected the evolution of atmospheric oscillation during the last millennium.