Correlations among random variables make significant impacts on probabilistic load flow(PLF)calculation results.In the existing studies,correlation coefficients or Gaussian copula are usually used to model the correla...Correlations among random variables make significant impacts on probabilistic load flow(PLF)calculation results.In the existing studies,correlation coefficients or Gaussian copula are usually used to model the correlations,while vine copula,which describes the complex dependence structure(DS)of random variables,is seldom discussed since it brings in much heavier computational burdens.To overcome this problem,this paper proposes an efficient PLF method considering input random variables with complex DS.Specifically,the Rosenblatt transformation(RT)is used to transform vine copula⁃based correlated variables into independent ones;and then the sparse polynomial chaos expansion(SPCE)evaluates output random variables of PLF calculation.The effectiveness of the proposed method is verified using the IEEE 123⁃bus system.展开更多
基金Fundamental Research Funds for the Central Universities,China(No.2232020D⁃53)。
文摘Correlations among random variables make significant impacts on probabilistic load flow(PLF)calculation results.In the existing studies,correlation coefficients or Gaussian copula are usually used to model the correlations,while vine copula,which describes the complex dependence structure(DS)of random variables,is seldom discussed since it brings in much heavier computational burdens.To overcome this problem,this paper proposes an efficient PLF method considering input random variables with complex DS.Specifically,the Rosenblatt transformation(RT)is used to transform vine copula⁃based correlated variables into independent ones;and then the sparse polynomial chaos expansion(SPCE)evaluates output random variables of PLF calculation.The effectiveness of the proposed method is verified using the IEEE 123⁃bus system.