Open biomass burning(OBB)has a significant impact on the heavy haze pollution in Northeast China(NEC)in recent years,which requires the investigation of the spatiotemporal variations of OBB with different vegetation t...Open biomass burning(OBB)has a significant impact on the heavy haze pollution in Northeast China(NEC)in recent years,which requires the investigation of the spatiotemporal variations of OBB with different vegetation types to better monitor and control OBB in NEC.The MODIS C6 fire and land cover products,together with the emissions inventory from the Global Fire Assimilation System,were used in this study.The changes in the total number of MODIS fire points in NEC from 2003 to 2017 demonstrated a fluctuating but generally rising trend,with a peak during 2013–2017.Most fire points concentrated in two key periods,i.e.March–April(37%)and October–November(46%).The total number of crop residue burnings in March–April was basically slightly fluctuating and increased sharply from 2013,whilst the number in October–November had a fluctuating and upward trend until 2015,when a decline appeared.The amount of OBB in March–April was higher than that in October–November during 2016–17.OBB in Heilongjiang Province comprised a major proportion of all fires,which accounted for 70.7%from 2003 to 2017;however,the proportion was only 66.2%during 2013–2017.The largest proportion of all fires was in cropland(90.8%),then forest(5.3%)and grassland(3.1%).The cumulative emissions of fine particulate matter,nitrogen oxides,and ammonia from agricultural open burning in NEC reached 78.43 Gg,24.9 Gg,and 13.7 Gg for March–April during 2013–17,respectively,which were close to those in October–November.展开更多
基金partially supported by the National Natural Science Foundation of China grant number 41775162
文摘Open biomass burning(OBB)has a significant impact on the heavy haze pollution in Northeast China(NEC)in recent years,which requires the investigation of the spatiotemporal variations of OBB with different vegetation types to better monitor and control OBB in NEC.The MODIS C6 fire and land cover products,together with the emissions inventory from the Global Fire Assimilation System,were used in this study.The changes in the total number of MODIS fire points in NEC from 2003 to 2017 demonstrated a fluctuating but generally rising trend,with a peak during 2013–2017.Most fire points concentrated in two key periods,i.e.March–April(37%)and October–November(46%).The total number of crop residue burnings in March–April was basically slightly fluctuating and increased sharply from 2013,whilst the number in October–November had a fluctuating and upward trend until 2015,when a decline appeared.The amount of OBB in March–April was higher than that in October–November during 2016–17.OBB in Heilongjiang Province comprised a major proportion of all fires,which accounted for 70.7%from 2003 to 2017;however,the proportion was only 66.2%during 2013–2017.The largest proportion of all fires was in cropland(90.8%),then forest(5.3%)and grassland(3.1%).The cumulative emissions of fine particulate matter,nitrogen oxides,and ammonia from agricultural open burning in NEC reached 78.43 Gg,24.9 Gg,and 13.7 Gg for March–April during 2013–17,respectively,which were close to those in October–November.
文摘以全球变暖为主要特征的气候变化已成为全球性环境问题,对全球可持续发展带来严峻挑战。2015年《巴黎协定》确定了自2020年后国家自主贡献的减排方式,并从2023年开始每5 a开展一次全球碳盘点。2019年第49届IPCC全会明确增加了基于卫星遥感的排放清单校验方法。欧盟、美国、日本、加拿大等正在大力发展温室气体排放的MVS(Monitoring and Verification Support)能力。本文调研分析了全球碳盘点对卫星遥感技术的需求,介绍了全球碳盘点卫星遥感的技术原理,梳理了温室气体卫星遥感、生态系统碳源汇卫星遥感估算、人为源碳排放卫星遥感、碳通量同化估算等全球碳盘点卫星遥感核心环节的研究现状与进展,分析了当前卫星遥感技术对全球碳盘点任务的支撑能力,并结合国内外发展趋势,针对性地提出中国的碳监测卫星计划方案,并展望了中国开展全球碳盘点卫星遥感监测重点任务,期望为中国全球碳盘点卫星遥感体系建设提供思路与方案。