Continuous-nondifferentiable terrains are extremely challenging for the environment adaption of six-legged robots. Previous researches have focused on gait planning methods to improve inherent ability of legged robots...Continuous-nondifferentiable terrains are extremely challenging for the environment adaption of six-legged robots. Previous researches have focused on gait planning methods to improve inherent ability of legged robots to walk over moderate terrains.However,most six-legged robots utilize relatively monotonic gait so that they still cannot well adapt tough terrains. As a result,the current legged robots easily get stuck and fall when encountering continuous-nondifferentiable terrains,such as stairs.Therefore,a method of gait switching is proposed so that six-legged robots can flexibly generate multiple gaits to adapt complex terrains. This study investigated the relationship between six-legged robot gait topologies and physical constraints,such as robot stability and robot-terrain interference. The proposed gait switcher can generate 0-6,1-5,2-4 and 3-3 gaits,which is instructed by the stability and interference criteria. Simulations and experiments were performed on a novel six-legged robot Hexa-XIII that succeeded climbing stairs over 45°. The effectiveness of the gait switching method is validated by the experiment results.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.U1613208)the National Key Research and Development Plan of China(Grant No.2017YFE0112200)the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant(Grant No.734575)。
文摘Continuous-nondifferentiable terrains are extremely challenging for the environment adaption of six-legged robots. Previous researches have focused on gait planning methods to improve inherent ability of legged robots to walk over moderate terrains.However,most six-legged robots utilize relatively monotonic gait so that they still cannot well adapt tough terrains. As a result,the current legged robots easily get stuck and fall when encountering continuous-nondifferentiable terrains,such as stairs.Therefore,a method of gait switching is proposed so that six-legged robots can flexibly generate multiple gaits to adapt complex terrains. This study investigated the relationship between six-legged robot gait topologies and physical constraints,such as robot stability and robot-terrain interference. The proposed gait switcher can generate 0-6,1-5,2-4 and 3-3 gaits,which is instructed by the stability and interference criteria. Simulations and experiments were performed on a novel six-legged robot Hexa-XIII that succeeded climbing stairs over 45°. The effectiveness of the gait switching method is validated by the experiment results.