期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An alert-situation text data augmentation method based on MLM
1
作者 DING Weijie mao tingyun +3 位作者 CHEN Lili ZHOU Mingwei YUAN Ying HU Wentao 《High Technology Letters》 EI CAS 2024年第4期389-396,共8页
The performance of deep learning models is heavily reliant on the quality and quantity of train-ing data.Insufficient training data will lead to overfitting.However,in the task of alert-situation text classification,i... The performance of deep learning models is heavily reliant on the quality and quantity of train-ing data.Insufficient training data will lead to overfitting.However,in the task of alert-situation text classification,it is usually difficult to obtain a large amount of training data.This paper proposes a text data augmentation method based on masked language model(MLM),aiming to enhance the generalization capability of deep learning models by expanding the training data.The method em-ploys a Mask strategy to randomly conceal words in the text,effectively leveraging contextual infor-mation to predict and replace masked words based on MLM,thereby generating new training data.Three Mask strategies of character level,word level and N-gram are designed,and the performance of each Mask strategy under different Mask ratios is analyzed and studied.The experimental results show that the performance of the word-level Mask strategy is better than the traditional data augmen-tation method. 展开更多
关键词 deep learning text data augmentation masked language model(MLM) alert-sit-uation text classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部