The automatically defect detection method using vision inspectionis a promising direction. In this paper, an efficient defect detection method fordetecting surface damage to cables on a cable-stayed bridge automatical...The automatically defect detection method using vision inspectionis a promising direction. In this paper, an efficient defect detection method fordetecting surface damage to cables on a cable-stayed bridge automatically isdeveloped. A mechanism design method for the protective layer of cables of abridge based on vision inspection and diameter measurement is proposed bycombining computer vision and diameter measurement techniques. A detectionsystem for the surface damages of cables is de-signed. Images of cablesurfaces are then enhanced and subjected to threshold segmentation by utilizingthe improved local grey contrast enhancement method and the improvedmaximum correlation method. Afterwards, the data obtained through diametermeasurement are mined by employing the moving average method. Imageenhancement, threshold segmentation, and diameter measurement methodsare separately validated experimentally. The experimental test results showthat the system delivers recall ratios for type-I and II surface defects of cablesreaching 80.4% and 85.2% respectively, which accurately detects bulges oncable surfaces.展开更多
为避免机器人运动学参数辨识过程中,测量坐标系与机器人基坐标系之间繁琐的坐标变换,首先利用关节旋量的空间几何特性,提出了基于伴随变换的距离误差模型。其次,针对距离误差模型中可辨识参数的冗余性,通过辨识雅可比矩阵的零空间分析,...为避免机器人运动学参数辨识过程中,测量坐标系与机器人基坐标系之间繁琐的坐标变换,首先利用关节旋量的空间几何特性,提出了基于伴随变换的距离误差模型。其次,针对距离误差模型中可辨识参数的冗余性,通过辨识雅可比矩阵的零空间分析,确定了可辨识参数的数目与误差测量方式之间的关系。确定了绕对应关节旋转的测量方式和相对初始位形的测量方式下可辨识参数的数目。最后,对KUKA you Bot机器人的运动学参数辨识进行了实验研究,实验结果验证了距离误差模型的有效性和参数冗余性分析的正确性。展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.52175100)the Natural Science Foundation of Jiangsu Province (Grant Nos.BK20201379)+1 种基金Jiangsu Provincial natural science research major project (Grant Nos.21KJA460013)six talent peaks project in Jiangsu Province (Grant Nos.JY-081).
文摘The automatically defect detection method using vision inspectionis a promising direction. In this paper, an efficient defect detection method fordetecting surface damage to cables on a cable-stayed bridge automatically isdeveloped. A mechanism design method for the protective layer of cables of abridge based on vision inspection and diameter measurement is proposed bycombining computer vision and diameter measurement techniques. A detectionsystem for the surface damages of cables is de-signed. Images of cablesurfaces are then enhanced and subjected to threshold segmentation by utilizingthe improved local grey contrast enhancement method and the improvedmaximum correlation method. Afterwards, the data obtained through diametermeasurement are mined by employing the moving average method. Imageenhancement, threshold segmentation, and diameter measurement methodsare separately validated experimentally. The experimental test results showthat the system delivers recall ratios for type-I and II surface defects of cablesreaching 80.4% and 85.2% respectively, which accurately detects bulges oncable surfaces.
文摘为避免机器人运动学参数辨识过程中,测量坐标系与机器人基坐标系之间繁琐的坐标变换,首先利用关节旋量的空间几何特性,提出了基于伴随变换的距离误差模型。其次,针对距离误差模型中可辨识参数的冗余性,通过辨识雅可比矩阵的零空间分析,确定了可辨识参数的数目与误差测量方式之间的关系。确定了绕对应关节旋转的测量方式和相对初始位形的测量方式下可辨识参数的数目。最后,对KUKA you Bot机器人的运动学参数辨识进行了实验研究,实验结果验证了距离误差模型的有效性和参数冗余性分析的正确性。