Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of Chi...Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of China), but many problems occurred in the earliest Mongolian pine plantations in Zhanggutai, Zhangwu County, Liaoning Province (ZZL). In order to clarify the reason, comprehensive investigations were carried out on differences in structure characteristics, growth processes and ecological factors between artificial stands (the first plantation established in ZZL in 1950s) and natural stands (the origin forests of the tree species in Honghuaerji, Inner Mongolia) on sandy land. The results showed that variation of diameter-class distributions in artificial stands and natural stands could be described by Weibull and Normal distribution models, respectively. Chapman-Richards growth model was employed to reconstruct the growth process of Mongolian pine based on the data from field investigation and stem analysis. The ages of maximum of relative growth rate and average growth rate of DBH, height, and volume of planted trees were 11, 22 years, 8, 15 years and 35, 59 years earlier than those of natural stand trees, respectively. In respect of the incremental acceleration of volume, the artificial and natural stands reached their maximum values at 14 years and 33 years respectively. The quantitative maturity ages of artificial stands and natural stands were 43 years and 102 years respectively. It was concluded that the life span of the Mongolian pine trees in natural stands was about 60 years longer than those in artificial stands. The differences mentioned above between artificial and natural Mongolian pine forests on sandy land were partially attributed to the drastic variations of ecological conditions such as latitude, temperature, precipitation, evaporation and height above sea level. Human beings' disturbances and higher density in plantation forest may be ascribed as additional reasons. Those results may be potentially useful for the management and afforestation of Mongolian pine plantations on sandy land in arid and semi-arid areas.展开更多
One of the most important and frequently studied variable in forests and the most basic element in governing transport processes of airflow is wind speed. The study of wind profile, defined as the change of wind veloc...One of the most important and frequently studied variable in forests and the most basic element in governing transport processes of airflow is wind speed. The study of wind profile, defined as the change of wind velocity with height, and wind ve-locity are important because of tree physiological and developmental responses. Generally, wind profiles above the ground or at a canopy surface follow classical logarithm law, but wind profiles in a single tree and in a forest stand are not logarithmic. This paper summarizes the results of wind profile studies within a single tree, in a forest stand, above the forest canopy and in a forest area from recent research in a coastal pine forest. The results demonstrate that: 1) wind profiles with in a single conifer tree crown showed an exponential function with height, 2) wind profiles in forest stands were able to be expressed by attenuation coefficient of wind, 3) wind profiles over a forest canopy could be determined using profile parameters (friction velocity, rough-ness length and displacement), and 4) for a forest area, the extreme wind speed could be predicted reasonably using the methods developed for the design of buildings. More research will be required to demonstrate: 1) relationships between wind profiles and tree or stand characteristics, 2) the simple methods for predicting wind profile parameters, and 3) the applications of wind profile in studies of tree physiology, forest ecology and management, and the detail ecological effects of wind on tree growth.展开更多
基金The research was supported by innovation research project of Chinese Academy of Sciences (KZCX3-SW-418) and by Nature Science Foundation of Liaoning Province (20021006).
文摘Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of China), but many problems occurred in the earliest Mongolian pine plantations in Zhanggutai, Zhangwu County, Liaoning Province (ZZL). In order to clarify the reason, comprehensive investigations were carried out on differences in structure characteristics, growth processes and ecological factors between artificial stands (the first plantation established in ZZL in 1950s) and natural stands (the origin forests of the tree species in Honghuaerji, Inner Mongolia) on sandy land. The results showed that variation of diameter-class distributions in artificial stands and natural stands could be described by Weibull and Normal distribution models, respectively. Chapman-Richards growth model was employed to reconstruct the growth process of Mongolian pine based on the data from field investigation and stem analysis. The ages of maximum of relative growth rate and average growth rate of DBH, height, and volume of planted trees were 11, 22 years, 8, 15 years and 35, 59 years earlier than those of natural stand trees, respectively. In respect of the incremental acceleration of volume, the artificial and natural stands reached their maximum values at 14 years and 33 years respectively. The quantitative maturity ages of artificial stands and natural stands were 43 years and 102 years respectively. It was concluded that the life span of the Mongolian pine trees in natural stands was about 60 years longer than those in artificial stands. The differences mentioned above between artificial and natural Mongolian pine forests on sandy land were partially attributed to the drastic variations of ecological conditions such as latitude, temperature, precipitation, evaporation and height above sea level. Human beings' disturbances and higher density in plantation forest may be ascribed as additional reasons. Those results may be potentially useful for the management and afforestation of Mongolian pine plantations on sandy land in arid and semi-arid areas.
基金supported by "the 100-Young-Researcher Project" of Chinese Academy of Sciences(BR0301)National Natural Science Foundation(30371149)
文摘One of the most important and frequently studied variable in forests and the most basic element in governing transport processes of airflow is wind speed. The study of wind profile, defined as the change of wind velocity with height, and wind ve-locity are important because of tree physiological and developmental responses. Generally, wind profiles above the ground or at a canopy surface follow classical logarithm law, but wind profiles in a single tree and in a forest stand are not logarithmic. This paper summarizes the results of wind profile studies within a single tree, in a forest stand, above the forest canopy and in a forest area from recent research in a coastal pine forest. The results demonstrate that: 1) wind profiles with in a single conifer tree crown showed an exponential function with height, 2) wind profiles in forest stands were able to be expressed by attenuation coefficient of wind, 3) wind profiles over a forest canopy could be determined using profile parameters (friction velocity, rough-ness length and displacement), and 4) for a forest area, the extreme wind speed could be predicted reasonably using the methods developed for the design of buildings. More research will be required to demonstrate: 1) relationships between wind profiles and tree or stand characteristics, 2) the simple methods for predicting wind profile parameters, and 3) the applications of wind profile in studies of tree physiology, forest ecology and management, and the detail ecological effects of wind on tree growth.