Er^(3+),Na^(+)co-doped CaF_(2) transparent ceramics with Er^(3+)dopant concentration of 3% and Na^(+) of 0%,0.5%,1.0%,1.5% and 2.0% were fabricated by the vacuum hot pressing method with 16 mm in diameter and 3 mm in ...Er^(3+),Na^(+)co-doped CaF_(2) transparent ceramics with Er^(3+)dopant concentration of 3% and Na^(+) of 0%,0.5%,1.0%,1.5% and 2.0% were fabricated by the vacuum hot pressing method with 16 mm in diameter and 3 mm in thickness.The average grain size of the obtained Er,Na∶CaF_(2) powders varied from 28 nm to 36 nm with the shape of sphere.The effects of Na^(+) doping on the transmittance,microstructure and spectral properties of Er^(3+)∶CaF_(2) transparent ceramics were investigated.The transmittance of all the obtained ceramic samples is above 84%in the wavelength of 1000 nm.The results show that after introducing Na^(+)into Er^(3+)∶CaF_(2) transparent ceramics,charge-neutralized Er^(3+)-Na^(+) structure formed which prevent Er^(3+) from clustering.The emission spectra of Er^(3+) in CaF_(2) transparent ceramics at around 1.5 and 2.7μm could be modulated by adjusting the concentration of Na^(+) and the near-infrared fluorescence lifetime at around 1.5μm increase with the increasing of Na^(+) concentration,reaching a maximum of 56.75 ms.展开更多
基金National Key R&D Program of China(2023YFB3507400)。
文摘Er^(3+),Na^(+)co-doped CaF_(2) transparent ceramics with Er^(3+)dopant concentration of 3% and Na^(+) of 0%,0.5%,1.0%,1.5% and 2.0% were fabricated by the vacuum hot pressing method with 16 mm in diameter and 3 mm in thickness.The average grain size of the obtained Er,Na∶CaF_(2) powders varied from 28 nm to 36 nm with the shape of sphere.The effects of Na^(+) doping on the transmittance,microstructure and spectral properties of Er^(3+)∶CaF_(2) transparent ceramics were investigated.The transmittance of all the obtained ceramic samples is above 84%in the wavelength of 1000 nm.The results show that after introducing Na^(+)into Er^(3+)∶CaF_(2) transparent ceramics,charge-neutralized Er^(3+)-Na^(+) structure formed which prevent Er^(3+) from clustering.The emission spectra of Er^(3+) in CaF_(2) transparent ceramics at around 1.5 and 2.7μm could be modulated by adjusting the concentration of Na^(+) and the near-infrared fluorescence lifetime at around 1.5μm increase with the increasing of Na^(+) concentration,reaching a maximum of 56.75 ms.