Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terz...Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terzaghi one-dimensional consolidation equation is not well-posed. Moreover, the classical boundary conditions of the equation can only be applied to problems with either perfectly pervious or perfectly impervious boundaries. General boundary conditions are proposed to overcome these shortcomings and thus transfer the solution of the Terzaghi one-dimensional consolidation equation to a well-posed initial boundary value problem. The solution for proposed general boundary conditions is validated by comparing it to the classical solution. The actual field drainage conditions can be simulated by adjusting the values of parameters b and c given in the proposed general botmdary conditions. For relatively high coefficient of consolidation, just one term in series expansions is enough to obtain results with acceptable accuracy.展开更多
Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution ...Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution is derived by using finite difference method and its correctness is assessed by comparing with existing analytical and numerical solutions.Based on the present solution,the effects of interface parameters,stress ratios(i.e.,final effective stress over initial effective stress,N_(σ))and the ratio c_(c)/c_(k)of compression index to permeability index on the consolidation behavior of soil are studied in detail.The results show that,the characteristics of one-dimensional nonlinear consolidation of soil are not only related to c_(c)/c_(k)and N_(σ),but also related to boundary conditions.In the engineering practice,the soil drainage rate of consolidation process can be designed by adjusting the values of interface parameters.展开更多
One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing...One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing equation were obtained by applying Laplace transform with respect to time,and then the pore-pressure,strain and deformation of the aquitard could be calculated by Laplace inversion.A case was analyzed to validate the correctness of the present method.Finally,some consolidation properties of the problem were analyzed.Comparison of the average degree of consolidation defined by pore pressure with that defined by settlement shows that they are different and the maximum difference is 22.8%.The influences of parameters of Merchant model and the rate of the water level on the consolidation are great.The smaller the viscosity coefficient is,the later the rate of consolidation decreases.The rate of consolidation is decreased with the decrease of the rate of the water level fall.Therefore,the lagged effect of land subsidence should be considered in the actual project.展开更多
基金Foundation item: Project(50608038) supported by the National Natural Science Foundation of China
文摘Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terzaghi one-dimensional consolidation equation is not well-posed. Moreover, the classical boundary conditions of the equation can only be applied to problems with either perfectly pervious or perfectly impervious boundaries. General boundary conditions are proposed to overcome these shortcomings and thus transfer the solution of the Terzaghi one-dimensional consolidation equation to a well-posed initial boundary value problem. The solution for proposed general boundary conditions is validated by comparing it to the classical solution. The actual field drainage conditions can be simulated by adjusting the values of parameters b and c given in the proposed general botmdary conditions. For relatively high coefficient of consolidation, just one term in series expansions is enough to obtain results with acceptable accuracy.
基金Projects(51678547,41672296,51878634,51878185,41867034)supported by the National Natural Science Foundation of China。
文摘Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution is derived by using finite difference method and its correctness is assessed by comparing with existing analytical and numerical solutions.Based on the present solution,the effects of interface parameters,stress ratios(i.e.,final effective stress over initial effective stress,N_(σ))and the ratio c_(c)/c_(k)of compression index to permeability index on the consolidation behavior of soil are studied in detail.The results show that,the characteristics of one-dimensional nonlinear consolidation of soil are not only related to c_(c)/c_(k)and N_(σ),but also related to boundary conditions.In the engineering practice,the soil drainage rate of consolidation process can be designed by adjusting the values of interface parameters.
基金Project(50608038/E0806) supported by the National Natural Science Foundation of China
文摘One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing equation were obtained by applying Laplace transform with respect to time,and then the pore-pressure,strain and deformation of the aquitard could be calculated by Laplace inversion.A case was analyzed to validate the correctness of the present method.Finally,some consolidation properties of the problem were analyzed.Comparison of the average degree of consolidation defined by pore pressure with that defined by settlement shows that they are different and the maximum difference is 22.8%.The influences of parameters of Merchant model and the rate of the water level on the consolidation are great.The smaller the viscosity coefficient is,the later the rate of consolidation decreases.The rate of consolidation is decreased with the decrease of the rate of the water level fall.Therefore,the lagged effect of land subsidence should be considered in the actual project.