本文基于雷诺时均N-S方程(RANS),结合k-ε湍流模型及VOF(Volume of Fluid)方法,对在均匀流体及强分层流体中运动的suboff模型粘性流场及尾迹特征进行数值预报。首先,对均匀流体中suboff粘性流场进行数值试验,并通过网格无关性验证及sub...本文基于雷诺时均N-S方程(RANS),结合k-ε湍流模型及VOF(Volume of Fluid)方法,对在均匀流体及强分层流体中运动的suboff模型粘性流场及尾迹特征进行数值预报。首先,对均匀流体中suboff粘性流场进行数值试验,并通过网格无关性验证及suboff水动力性能、艇体压力分布等计算结果与试验结果的对比验证了本文数值方法的有效性与可靠性。其次,实现了强分层流体中运动suboff内波尾迹的数值预报。通过对比2种工况下suboff尾迹特征的空间分部及细节流场,分析了内波对suboff尾迹的影响方式。展开更多
In the process of deep-sea mining,the liquid-solid flows in the vertical transportation pipeline are very complex.In the present work,an in-house solver MPSDEM-SJTU based on the improved MPS and DEM is developed for t...In the process of deep-sea mining,the liquid-solid flows in the vertical transportation pipeline are very complex.In the present work,an in-house solver MPSDEM-SJTU based on the improved MPS and DEM is developed for the simulation of hydraulic conveying.Firstly,three examples including the multilayer cylinder collapse,the Poiseuille flow and two-phase dam-break are used to validate the precision of the DEM model,the pipe flow model and MPS-DEM coupling model,respectively.Then,the hydraulic conveying with coarse particles in a vertical pipe is simulated.The solid particle distribution is presented and investigated in detail.Finally,the coupling method is successfully applied for the simulation of the liquid-solid flows in a vertical pipe with rotating blades,which shows the stability of the solver under rotating boundary conditions.This fully Lagrangian model is expected to be a new approach for analyzing hydraulic conveying.展开更多
文摘本文基于雷诺时均N-S方程(RANS),结合k-ε湍流模型及VOF(Volume of Fluid)方法,对在均匀流体及强分层流体中运动的suboff模型粘性流场及尾迹特征进行数值预报。首先,对均匀流体中suboff粘性流场进行数值试验,并通过网格无关性验证及suboff水动力性能、艇体压力分布等计算结果与试验结果的对比验证了本文数值方法的有效性与可靠性。其次,实现了强分层流体中运动suboff内波尾迹的数值预报。通过对比2种工况下suboff尾迹特征的空间分部及细节流场,分析了内波对suboff尾迹的影响方式。
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51879159 and 52131102)the National Key Research and Development Program of China(Grant No.2019YFB1704200)。
文摘In the process of deep-sea mining,the liquid-solid flows in the vertical transportation pipeline are very complex.In the present work,an in-house solver MPSDEM-SJTU based on the improved MPS and DEM is developed for the simulation of hydraulic conveying.Firstly,three examples including the multilayer cylinder collapse,the Poiseuille flow and two-phase dam-break are used to validate the precision of the DEM model,the pipe flow model and MPS-DEM coupling model,respectively.Then,the hydraulic conveying with coarse particles in a vertical pipe is simulated.The solid particle distribution is presented and investigated in detail.Finally,the coupling method is successfully applied for the simulation of the liquid-solid flows in a vertical pipe with rotating blades,which shows the stability of the solver under rotating boundary conditions.This fully Lagrangian model is expected to be a new approach for analyzing hydraulic conveying.