The Local Monte Carlo(LMC)method is used to solve the problems of deep penetration and long time in the neutronics calculation of the radial neutron camera(RNC)diagnostic system on the experimental advanced supercondu...The Local Monte Carlo(LMC)method is used to solve the problems of deep penetration and long time in the neutronics calculation of the radial neutron camera(RNC)diagnostic system on the experimental advanced superconducting tokamak(EAST),and the radiation distribution of the RNC and the neutron flux at the detector positions of each channel are obtained.Compared with the results calculated by the global variance reduction method,it is shown that the LMC calculation is reliable within the reasonable error range.The calculation process of LMC is analyzed in detail,and the transport process of radiation particles is simulated in two steps.In the first step,an integrated neutronics model considering the complex window environment and a neutron source model based on EAST plasma shape are used to support the calculation.The particle information on the equivalent surface is analyzed to evaluate the rationality of settings of equivalent surface source and boundary.Based on the characteristic that only a local geometric model is needed in the second step,it is shown that the LMC is an advantageous calculation method for the nuclear shielding design of tokamak diagnostic systems.展开更多
Optical chaotic signals emitted from an external-cavity feedback or injected laser diode enable small-signal information concealment in a noise-like carrier for secure optical communications.Due to the chaotic bandwid...Optical chaotic signals emitted from an external-cavity feedback or injected laser diode enable small-signal information concealment in a noise-like carrier for secure optical communications.Due to the chaotic bandwidth limitation resulting from intrinsic relaxation oscillation frequency of lasers,multiplexing of optical chaotic signal,such as wavelength division multiplexing in fiber,is a typical candidate for high-capacity secure applications.However,to our best knowledge,the utilization of the spatial dimension of optical chaos for free-space secure communication has not yet been reported.Here,we experimentally demonstrate a free-space all-optical chaotic communication system that simultaneously enhances transmission capacity and security by orbital angular momentum(OAM)multiplexing.Optical chaotic signals with two different OAM modes totally carrying 20 Gbps on-off keying signals are secretly transmitted over a 2 m free-space link,where the channel crosstalk of OAM modes is less than-20 d B,with the mode spacing no less than 3.The receiver can extract valid information only when capturing approximately 92.5% of the OAM beam and correctly demodulating the corresponding mode.Bit error rate below the 7%hard-decision forward error correction threshold of 3.8×10^(-3)can be achieved for the intended recipient.Moreover,a simulated weak turbulence is introduced to comprehensively analyze the influence on the system performance,including channel crosstalk,chaotic synchronization,and transmission performance.Our work may inspire structured light application in optical chaos and pave a new way for developing future high-capacity free-space chaotic secure communication systems.展开更多
基金support and help in this research.This work was supported by Users with Excellence Program of Hefei Science Center CAS(No.2020HSC-UE012)Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)National Natural Science Foundation of China(No.11605241)。
文摘The Local Monte Carlo(LMC)method is used to solve the problems of deep penetration and long time in the neutronics calculation of the radial neutron camera(RNC)diagnostic system on the experimental advanced superconducting tokamak(EAST),and the radiation distribution of the RNC and the neutron flux at the detector positions of each channel are obtained.Compared with the results calculated by the global variance reduction method,it is shown that the LMC calculation is reliable within the reasonable error range.The calculation process of LMC is analyzed in detail,and the transport process of radiation particles is simulated in two steps.In the first step,an integrated neutronics model considering the complex window environment and a neutron source model based on EAST plasma shape are used to support the calculation.The particle information on the equivalent surface is analyzed to evaluate the rationality of settings of equivalent surface source and boundary.Based on the characteristic that only a local geometric model is needed in the second step,it is shown that the LMC is an advantageous calculation method for the nuclear shielding design of tokamak diagnostic systems.
基金National Natural Science Foundation of China(62105338,62171087)Sichuan Science and Technology Program(2021JDJQ0023,2021ZYCD001)+1 种基金Fundamental Research Funds for the Central Universities(ZYGX2019J003)Science and Technology Commission of Shanghai Municipality(SKLSFO2020-05)。
文摘Optical chaotic signals emitted from an external-cavity feedback or injected laser diode enable small-signal information concealment in a noise-like carrier for secure optical communications.Due to the chaotic bandwidth limitation resulting from intrinsic relaxation oscillation frequency of lasers,multiplexing of optical chaotic signal,such as wavelength division multiplexing in fiber,is a typical candidate for high-capacity secure applications.However,to our best knowledge,the utilization of the spatial dimension of optical chaos for free-space secure communication has not yet been reported.Here,we experimentally demonstrate a free-space all-optical chaotic communication system that simultaneously enhances transmission capacity and security by orbital angular momentum(OAM)multiplexing.Optical chaotic signals with two different OAM modes totally carrying 20 Gbps on-off keying signals are secretly transmitted over a 2 m free-space link,where the channel crosstalk of OAM modes is less than-20 d B,with the mode spacing no less than 3.The receiver can extract valid information only when capturing approximately 92.5% of the OAM beam and correctly demodulating the corresponding mode.Bit error rate below the 7%hard-decision forward error correction threshold of 3.8×10^(-3)can be achieved for the intended recipient.Moreover,a simulated weak turbulence is introduced to comprehensively analyze the influence on the system performance,including channel crosstalk,chaotic synchronization,and transmission performance.Our work may inspire structured light application in optical chaos and pave a new way for developing future high-capacity free-space chaotic secure communication systems.