Moderate or intense low oxygen dilution(MILD)combustion plays a significant role in the mitigation of combustion-generated pollutants and greenhouse gases whilst meeting thermal efficiency needs.However,due to the lac...Moderate or intense low oxygen dilution(MILD)combustion plays a significant role in the mitigation of combustion-generated pollutants and greenhouse gases whilst meeting thermal efficiency needs.However,due to the lack of the fundamental knowledge on this combustion,there is a misconception that MILD combustion should be established by high preheating of the air,which has limited its application.Our research and development on this combustion has been performed for several years. We have found that the requirements for establishing the MILD combustion are more relaxed than previously.It is also revealed that this combustion of different type,i.e.,non-premixed,partially premixed and fully premixed,can be achieved by firing various fuels(i.e.,gaseous,liquid and solid fuels).It is suggested that the application of the MILD combustion can be expanded significantly.The present review summarizes the progress and recent trend made in the R&D of this combustion and recommends further fundamental studies for improving our knowledge and widening its applications.展开更多
This study investigated the formation and emission characteristics of nitric oxide(NO) from flameless MILD(moderate or intensive low-oxygen dilution) combustion(MILDC) versus traditional visible-flame combustion(TC) i...This study investigated the formation and emission characteristics of nitric oxide(NO) from flameless MILD(moderate or intensive low-oxygen dilution) combustion(MILDC) versus traditional visible-flame combustion(TC) in a 30-k W furnace. Both combustion processes were experimentally operated successively in the same furnace, burning natural gas at a fixed rate of 19 k W and the equivalence ratio of 0.86. Numerical simulations of TC and MILDC were carried out to explain their distinction in the measured furnace temperature and exhaust NO emissions. Present measurements of the NO emission(XNO) versus a varying furnace wall temperature(Tw) have revealed, at the first time, that the relationship of XNO ~ Tw was exponential in both TC and MILDC. By analyzing the simulated results, the average temperature over the reaction zone was identified to be the common characteristic temperature for scaling NO emissions of both cases. Moreover, relative to TC, MILDC had a fairly uniform temperature distribution and low peak temperature, thus reducing the NO emission by over 90%. The thermal-NO formation was found to contribute more than 70%-80% to the total XNO from TC while the N2O-intermediate route dominated the NO emission from MILDC.展开更多
The present study experimentally investigated the near-field flow mixing characteristics of two turbulent jets issuing from equilateral triangular and circular orifice plates into effectively unbounded surroundings,re...The present study experimentally investigated the near-field flow mixing characteristics of two turbulent jets issuing from equilateral triangular and circular orifice plates into effectively unbounded surroundings,respectively.Planar particle image velocimetry(PIV) was applied to measure the velocity field at the same Reynolds number of Re=50,000,where Re = UeDe /with Ue being the exit bulk velocity and the kinematic viscosity of fluid,D e the equivalent diameters.The instantaneous velocity,mean velocity,Reynolds stresses were obtained.From the mean velocity field,the centreline velocity decay rate and half-velocity width were derived.Comparing the mixing characteristics of the two jets,it is found that the triangular jet has a faster mixing rate than the circular counterpart.The triangular jet entrainments with the ambient fluid at a higher rate in the near field.This is evidenced by a shorter unmixed core,faster Reynolds stress and centreline turbulence intensity growth.The primary coherent structures in the near field are found to break down more rapidly in the triangular jet as compared to the circular jet.Over the entire measurement region,the triangular jet maintained a higher rate of decay and spread.Moreover,all components of Reynolds stress of the triangular jet appear to reach their peaks earlier,and then decay more rapidly than those of the circular jet.In addition,the axis-switching phenomenon is observed in the triangular jet.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11072005,50936001)the Open Foundation of State Key Laboratory of Coal Combustion(Grant No.FSKLCC0801)
文摘Moderate or intense low oxygen dilution(MILD)combustion plays a significant role in the mitigation of combustion-generated pollutants and greenhouse gases whilst meeting thermal efficiency needs.However,due to the lack of the fundamental knowledge on this combustion,there is a misconception that MILD combustion should be established by high preheating of the air,which has limited its application.Our research and development on this combustion has been performed for several years. We have found that the requirements for establishing the MILD combustion are more relaxed than previously.It is also revealed that this combustion of different type,i.e.,non-premixed,partially premixed and fully premixed,can be achieved by firing various fuels(i.e.,gaseous,liquid and solid fuels).It is suggested that the application of the MILD combustion can be expanded significantly.The present review summarizes the progress and recent trend made in the R&D of this combustion and recommends further fundamental studies for improving our knowledge and widening its applications.
基金support of National Natural Science Foundation of China(No.51776003)is gratefully acknowledged。
文摘This study investigated the formation and emission characteristics of nitric oxide(NO) from flameless MILD(moderate or intensive low-oxygen dilution) combustion(MILDC) versus traditional visible-flame combustion(TC) in a 30-k W furnace. Both combustion processes were experimentally operated successively in the same furnace, burning natural gas at a fixed rate of 19 k W and the equivalence ratio of 0.86. Numerical simulations of TC and MILDC were carried out to explain their distinction in the measured furnace temperature and exhaust NO emissions. Present measurements of the NO emission(XNO) versus a varying furnace wall temperature(Tw) have revealed, at the first time, that the relationship of XNO ~ Tw was exponential in both TC and MILDC. By analyzing the simulated results, the average temperature over the reaction zone was identified to be the common characteristic temperature for scaling NO emissions of both cases. Moreover, relative to TC, MILDC had a fairly uniform temperature distribution and low peak temperature, thus reducing the NO emission by over 90%. The thermal-NO formation was found to contribute more than 70%-80% to the total XNO from TC while the N2O-intermediate route dominated the NO emission from MILDC.
基金the support of the Fundamental Research Funds for the Central Universities (Grant No. 3132013029)the National Natural Science Foundation of China (Grant Nos. 10921202 and11072005)
文摘The present study experimentally investigated the near-field flow mixing characteristics of two turbulent jets issuing from equilateral triangular and circular orifice plates into effectively unbounded surroundings,respectively.Planar particle image velocimetry(PIV) was applied to measure the velocity field at the same Reynolds number of Re=50,000,where Re = UeDe /with Ue being the exit bulk velocity and the kinematic viscosity of fluid,D e the equivalent diameters.The instantaneous velocity,mean velocity,Reynolds stresses were obtained.From the mean velocity field,the centreline velocity decay rate and half-velocity width were derived.Comparing the mixing characteristics of the two jets,it is found that the triangular jet has a faster mixing rate than the circular counterpart.The triangular jet entrainments with the ambient fluid at a higher rate in the near field.This is evidenced by a shorter unmixed core,faster Reynolds stress and centreline turbulence intensity growth.The primary coherent structures in the near field are found to break down more rapidly in the triangular jet as compared to the circular jet.Over the entire measurement region,the triangular jet maintained a higher rate of decay and spread.Moreover,all components of Reynolds stress of the triangular jet appear to reach their peaks earlier,and then decay more rapidly than those of the circular jet.In addition,the axis-switching phenomenon is observed in the triangular jet.