Superior anti-icing and active deicing multifunctional surfaces are highly desired in outdoor infrastructure and work of aircraft,automobiles,wind turbines,power transmission,etc.Herein,inspired by microstructures and...Superior anti-icing and active deicing multifunctional surfaces are highly desired in outdoor infrastructure and work of aircraft,automobiles,wind turbines,power transmission,etc.Herein,inspired by microstructures and functions of natural opal and Nepenthes pitcher plants,we present a novel multifunctional inverse opal slippery anti-icing surface(IOSAS)by employing a combined method of colloidal nanoparticles self-assembly,microstructure mold replication,and hydrophobic lubricating fluid infiltration.Because of the 3D long range ordered nanoscale porous structure of artificial inverse opal,the lubricating liquid could wick into,wet,and stably adhere to IOSAS,forming thousands of solid-liquid interfaces and defect-free and inert slippery surface.Thus,the IOSAS was imparted with inhibiting ice nucleation property and hindering heat transfer and ice crystals’growth characteristics.Owing to the existence of a thin liquid layer on the surface,the mechanical interlock between porous substrate and ice is greatly weakened,which imparts the slippery surface with low ice adhesion strength,and the frozen droplet and ice bulk could be easily removed.In addition,we have demonstrated that the supercooled IOSAS has no adhesion to moving water droplets,while various subcooled metal surfaces are adhesive,and this exhibits liquid-infused inverse opal surfaces dynamic low-temperature water-repellent performance.These characteristics endow IOSAS with multifunctional anti-icing performances,making it a promising option for a wide range of ice-phobic applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51725602 and 52036006)the Scientific Research Foundation of Graduate School of Southeast University(Grant No.YBPY 2113).
文摘Superior anti-icing and active deicing multifunctional surfaces are highly desired in outdoor infrastructure and work of aircraft,automobiles,wind turbines,power transmission,etc.Herein,inspired by microstructures and functions of natural opal and Nepenthes pitcher plants,we present a novel multifunctional inverse opal slippery anti-icing surface(IOSAS)by employing a combined method of colloidal nanoparticles self-assembly,microstructure mold replication,and hydrophobic lubricating fluid infiltration.Because of the 3D long range ordered nanoscale porous structure of artificial inverse opal,the lubricating liquid could wick into,wet,and stably adhere to IOSAS,forming thousands of solid-liquid interfaces and defect-free and inert slippery surface.Thus,the IOSAS was imparted with inhibiting ice nucleation property and hindering heat transfer and ice crystals’growth characteristics.Owing to the existence of a thin liquid layer on the surface,the mechanical interlock between porous substrate and ice is greatly weakened,which imparts the slippery surface with low ice adhesion strength,and the frozen droplet and ice bulk could be easily removed.In addition,we have demonstrated that the supercooled IOSAS has no adhesion to moving water droplets,while various subcooled metal surfaces are adhesive,and this exhibits liquid-infused inverse opal surfaces dynamic low-temperature water-repellent performance.These characteristics endow IOSAS with multifunctional anti-icing performances,making it a promising option for a wide range of ice-phobic applications.