Studies on susceptibility to debris flows at regional scale (ioo-looo km2) are important for the protection and management of mountain areas. To reach this objective, routing models, mainly based on land topography,...Studies on susceptibility to debris flows at regional scale (ioo-looo km2) are important for the protection and management of mountain areas. To reach this objective, routing models, mainly based on land topography, can be used to predict susceptible areas rapidly while necessitating few input data. In this research, Flow-R model is implemented to create the susceptibility map for the debris flow of the Vizze Valley (BZ, North-Eastern Italy; 134 km^2). The analysis considers the model application at local scale for three sub-catchments and then it explores the model upsealing at the regional scale by verifying two methods to generate the source areas of debris-flow initiation. Using data of an extreme event occurred in the Vizze Valley (4 August 2012) and historical information, the modeling verification highlights that the propagation parameters are relatively simple to set in order to obtain correct runout distances. A double DTM filtering - using a threshold for the upslope contributing area (0.1 km^2) and a threshold for the terrain-slope angle (15°) provides a satisfactory prediction of source areas and susceptibility map within the geological conditions of the Vizze Valley.展开更多
基金granted by the Junior Research Grant Universitàdegli Studi di Padova,year 2013,prot.CPDR138494(“Criticitàidrauliche nel reticolo montano nei riguardi del movimento di detrito legnoso e di colate detritiche”Prof.Vincenzo D’Agostino)
文摘Studies on susceptibility to debris flows at regional scale (ioo-looo km2) are important for the protection and management of mountain areas. To reach this objective, routing models, mainly based on land topography, can be used to predict susceptible areas rapidly while necessitating few input data. In this research, Flow-R model is implemented to create the susceptibility map for the debris flow of the Vizze Valley (BZ, North-Eastern Italy; 134 km^2). The analysis considers the model application at local scale for three sub-catchments and then it explores the model upsealing at the regional scale by verifying two methods to generate the source areas of debris-flow initiation. Using data of an extreme event occurred in the Vizze Valley (4 August 2012) and historical information, the modeling verification highlights that the propagation parameters are relatively simple to set in order to obtain correct runout distances. A double DTM filtering - using a threshold for the upslope contributing area (0.1 km^2) and a threshold for the terrain-slope angle (15°) provides a satisfactory prediction of source areas and susceptibility map within the geological conditions of the Vizze Valley.