期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Selenium and the Thioredoxin and Glutaredoxin Systems 被引量:4
1
作者 mikael bjornstedt SUSHIL KUMAR +3 位作者 LINDA BJ■RKHEM GIANNIS SPYROU AND ARNE HOLMGREN(The Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77 Stockholm, Sweden Department of Bioscience, 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 1997年第2期271-279,共9页
Thioredoxin (Trx) is a small ubiquitous dithiol protein which together with the FADcontaining enzyme thioredoxin reductase (TR) and NADPH (the Trx system) is a hydrogen donor for ribonucleotide reductase essential for... Thioredoxin (Trx) is a small ubiquitous dithiol protein which together with the FADcontaining enzyme thioredoxin reductase (TR) and NADPH (the Trx system) is a hydrogen donor for ribonucleotide reductase essential for DNA synthesis and a general protein disulfide reductase involved in redox regulation. Selenite, selenodiglutathione (GS-Se-SG) and selenocystine are efficiently reduced by thioredoxins and also directly by NADPH and mammalian TR but not by the E. coli enzyme. Incubation of selenite or GS-Se-SG with the Trx system or with mammalian TR results in a rapid formation of selenide, which by redox cycling with oxygen may cause a large non-stoichiometric oxidation of NADPH. Selenocystine is efficiently reduced into two molecules of the selenol amino acid selenocysteine by mammalian TR with a Km-value (6μmol·L-1 ) and a high turnover number (kcat, 3200 min-1) almost identical to the natural substrate Trx-S2. TR also directly reduces lipid hydroperoxides and this peroxidase reaction is strongly stimulated by the presence of catalytic amounts of free selenocysteine. Glutaredoxin (Grx) which catalyzes GSH dependent disulfide reduction also via a redox-active disulfide and Trx are both efficient electron donors to the hut-nan plasrna glutathione peroxidase providing a mechanism by which human plasma glutathione peroxidase may reduce hydroperoxides in an environment almost free from glutathione. Selenate is reduced by Grx and Trx in the presence of GSH. The DNA-binding of the transcription factor AP-1 is strongly inhibited by GS-Se-SG and selenite. Furtherrnore, selenide formed by TR-mediated reduction of selenite and GS-Se-SG inhibits lipoxygenase and changes the electron spin resonance spectrum of the active site iron. Mammalian TR with two subunits of 57 kDa has recently been cloned and shown to be homologous to glutathione reductase. The rat enzyme contains a selenocysteine residue in a unique Cterminal position and a conserved SEClS sequence directing insertion of the selenocysteine. The discovery of selenocysteine in mammalian TR may explain the broad substrate specificity of the enzyme and the requirement of seleflium for cell proliferation 展开更多
关键词 NADPH Selenium and the Thioredoxin and Glutaredoxin Systems GSH USA ADF
下载PDF
Morphological alterations and redox changes associated with hepatic warm ischemia-reperfusion injury 被引量:1
2
作者 Rim Jawad Melroy D'souza +5 位作者 Lisa Arodin Selenius Marita Wallenberg Lundgren Olof Danielsson Greg Nowak mikael bjornstedt Bengt Isaksson 《World Journal of Hepatology》 CAS 2017年第34期1261-1269,共9页
AIM To study the effects of warm ischemia-reperfusion(I/R) injury on hepatic morphology at the ultrastructural level and to analyze the expression of the thioredoxin(TRX)and glutaredoxin(GRX) systems.METHODS Eleven pa... AIM To study the effects of warm ischemia-reperfusion(I/R) injury on hepatic morphology at the ultrastructural level and to analyze the expression of the thioredoxin(TRX)and glutaredoxin(GRX) systems.METHODS Eleven patients undergoing liver resection were subjected to portal triad clamping(PTC). Liver biopsies were collected at three time points; first prior to PTC(baseline), 20 min after PTC(post-ischemia) and 20 min after reperfusion(post-reperfusion). Electron microscopy and morphometry were used to study and quantify ultrastructural changes, respectively. Additionally, gene expression analysis of TRX and GRX isoforms was performed by quantitative PCR. For further validation of redox protein status, immunogold staining was performed for the isoforms GRX1 and TRX1.RESULTS Post-ischemia, a significant loss of the liver sinusoidal endothelial cell(LSEC) lining was observed(P = 0.0003) accompanied by a decrease of hepatocyte microvilli in the space of Disse. Hepatocellular morphology was well preserved apart from the appearance of crystalline mitochondrial inclusions in 7 out of 11 patients. Postreperfusion biopsies had similar features as post-ischemia with the exception of signs of a reactivation of the LSECs. No changes in the expression of redox-regulatory genes could be observed at mR NA level of the isoforms of the TRX family but immunoelectron microscopy indicated a redistribution of TRX1 within the cell.CONCLUSION At the ultrastructural level, the major impact of hepatic warm I/R injury after PTC was borne by the LSECs with detachment and reactivation at ischemia and reperfusion, respectively. Hepatocytes morphology were well preserved. Crystalline inclusions in mitochondria were observed in the hepatocyte after ischemia. 展开更多
关键词 Hepatic ischemia-reperfusion injury Ischemia reperfusion injury Warm ischemia-reperfusion injury Glutaredoxins THIOREDOXINS Electron microscopy Oxidative stress Portal triad clamping
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部