We analyzed the excited-state structures and emission spectra of firefly emitter, the anionic keto form of firefly oxyluciferin(keto-l), determined by the time dependent-density functional theory(TD-DFT) approach....We analyzed the excited-state structures and emission spectra of firefly emitter, the anionic keto form of firefly oxyluciferin(keto-l), determined by the time dependent-density functional theory(TD-DFT) approach. The analysis is based on a direct comparison with the highly correlated CASSCF(MS-CASPT2) ab initio approach. 49 DFT functionals were considered and applied to the study. Among the tested functionals, mPW3PBE, B3PW91 and B3P86 give the best performance for ground-state geometry, absorption spectrum, excited-state geometry and emis- sion spectrum.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.21173099, 20973078, 51164017), the Applied Basic Research Plans Program of Yunnan Province, China(No.2011FZ040), the Scientific Research Fund of Yunnan Provincial Educa- tion Department, China(No.2012Y545), the Training Foundation for Talents of Kunming University of Science and Technolo- gy(No.KKSY201232040) and the Foundation of State Key Laboratory of Theoretical and Computational Chemistry, China.
文摘We analyzed the excited-state structures and emission spectra of firefly emitter, the anionic keto form of firefly oxyluciferin(keto-l), determined by the time dependent-density functional theory(TD-DFT) approach. The analysis is based on a direct comparison with the highly correlated CASSCF(MS-CASPT2) ab initio approach. 49 DFT functionals were considered and applied to the study. Among the tested functionals, mPW3PBE, B3PW91 and B3P86 give the best performance for ground-state geometry, absorption spectrum, excited-state geometry and emis- sion spectrum.