If a first-order algebraic ODE is defined over a certain differential field,then the most elementary solution class,in which one can hope to find a general solution,is given by the adjunction of a single arbitrary con...If a first-order algebraic ODE is defined over a certain differential field,then the most elementary solution class,in which one can hope to find a general solution,is given by the adjunction of a single arbitrary constant to this field.Solutions of this type give rise to a particular kind of generic point—a rational parametrization—of an algebraic curve which is associated in a natural way to the ODE’s defining polynomial.As for the opposite direction,we show that a suitable rational parametrization of the associated curve can be extended to a general solution of the ODE if and only if one can find a certain automorphism of the solution field.These automorphisms are determined by linear rational functions,i.e.,Möbius transformations.Intrinsic properties of rational parametrizations,in combination with the particular shape of such automorphisms,lead to a number of necessary conditions on the existence of general solutions in this solution class.Furthermore,the desired linear rational function can be determined by solving a comparatively simple differential system over the ODE’s field of definition.These results hold for arbitrary differential fields of characteristic zero.展开更多
文摘If a first-order algebraic ODE is defined over a certain differential field,then the most elementary solution class,in which one can hope to find a general solution,is given by the adjunction of a single arbitrary constant to this field.Solutions of this type give rise to a particular kind of generic point—a rational parametrization—of an algebraic curve which is associated in a natural way to the ODE’s defining polynomial.As for the opposite direction,we show that a suitable rational parametrization of the associated curve can be extended to a general solution of the ODE if and only if one can find a certain automorphism of the solution field.These automorphisms are determined by linear rational functions,i.e.,Möbius transformations.Intrinsic properties of rational parametrizations,in combination with the particular shape of such automorphisms,lead to a number of necessary conditions on the existence of general solutions in this solution class.Furthermore,the desired linear rational function can be determined by solving a comparatively simple differential system over the ODE’s field of definition.These results hold for arbitrary differential fields of characteristic zero.