Due to spatial variability of material property, Young' s modulus is assumed to be a stochastic process. This paper proposes a new method of calculating stochastic field, which includes the information of nodes and t...Due to spatial variability of material property, Young' s modulus is assumed to be a stochastic process. This paper proposes a new method of calculating stochastic field, which includes the information of nodes and the midpoint. The method is of high accuracy, and is easy to program. It is an improvement of the midpoint method of stochastic field. In the case of material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a structure is transformed into a static problem using Newmark method. The Taylor expansion stochastic finite element method(TSFEM) is extended for the structure vibration analysis. An example is given and the calculated results are compared to validate the proposed methods.展开更多
基金supported by the National Natural Science Foundation under Grant No.10202016
文摘Due to spatial variability of material property, Young' s modulus is assumed to be a stochastic process. This paper proposes a new method of calculating stochastic field, which includes the information of nodes and the midpoint. The method is of high accuracy, and is easy to program. It is an improvement of the midpoint method of stochastic field. In the case of material properties, geometry parameters and applied loads are assumed to be stochastic, the vibration equation of a structure is transformed into a static problem using Newmark method. The Taylor expansion stochastic finite element method(TSFEM) is extended for the structure vibration analysis. An example is given and the calculated results are compared to validate the proposed methods.