Winds on the earth are commonly strong enough to erode transport and deposit sediment. The modes of sand transport by the wind are greatly different from those by water flow. On the other hand wind-blown sands are of...Winds on the earth are commonly strong enough to erode transport and deposit sediment. The modes of sand transport by the wind are greatly different from those by water flow. On the other hand wind-blown sands are of a material circulation process of the earth surface. They affect wind-sand transport flux and sand ejection of a flux, the damage of grains formed cannot be neglected in engineering. Because of the complexity of windblown sand flux system, the understanding of its basic mechanics is not yet clear. The key forces in sand salutation mainly includes: the valid gravity, air drag force 'Magnus force' Saffman force 'Basset force' additional quality force and scatter force among grains. The most important force in sand salutation is the air drag force. Computation of the single sphere drag coefficient and double spheres drag coefficient is presented for the distance between two spheres being smaller than twelve times of the sphere diameter and the spheres being at different angular positions. The flow interference of two spheres was investigated for the distance s = 0.08 d to 12d, angular position 0 = 0 to 360 and Reynolds number 15≤Re≤1000.展开更多
The Longitudinal Aerodynamic Characteristics (LACs)of a wing-body without tail unit is computed and tested in wind tunnel. The empirical formulas of Datcom and some other authors are applied to estimate the basic Ae...The Longitudinal Aerodynamic Characteristics (LACs)of a wing-body without tail unit is computed and tested in wind tunnel. The empirical formulas of Datcom and some other authors are applied to estimate the basic Aerodynamic Coefficients. Two wing options are covered as analysis space, namely, the double-delta wing and streak wing, getting two analysis groups respectively. Good agreement between the computation results and the wind tunnel tests shows that the methodology presented is a simple and reliable way to calculate this kind of novel wing-body configurations.展开更多
基金supported by National Natural Science Foundation (10532030)
文摘Winds on the earth are commonly strong enough to erode transport and deposit sediment. The modes of sand transport by the wind are greatly different from those by water flow. On the other hand wind-blown sands are of a material circulation process of the earth surface. They affect wind-sand transport flux and sand ejection of a flux, the damage of grains formed cannot be neglected in engineering. Because of the complexity of windblown sand flux system, the understanding of its basic mechanics is not yet clear. The key forces in sand salutation mainly includes: the valid gravity, air drag force 'Magnus force' Saffman force 'Basset force' additional quality force and scatter force among grains. The most important force in sand salutation is the air drag force. Computation of the single sphere drag coefficient and double spheres drag coefficient is presented for the distance between two spheres being smaller than twelve times of the sphere diameter and the spheres being at different angular positions. The flow interference of two spheres was investigated for the distance s = 0.08 d to 12d, angular position 0 = 0 to 360 and Reynolds number 15≤Re≤1000.
文摘The Longitudinal Aerodynamic Characteristics (LACs)of a wing-body without tail unit is computed and tested in wind tunnel. The empirical formulas of Datcom and some other authors are applied to estimate the basic Aerodynamic Coefficients. Two wing options are covered as analysis space, namely, the double-delta wing and streak wing, getting two analysis groups respectively. Good agreement between the computation results and the wind tunnel tests shows that the methodology presented is a simple and reliable way to calculate this kind of novel wing-body configurations.