A new scaffold has been developed,which made from poly(ε-caprolactone)( PCL) membrane with porous structure,and reinforcement of PCL scaffold was achieved by embedding polyethylene terephthalate(PET) weft-knit tubula...A new scaffold has been developed,which made from poly(ε-caprolactone)( PCL) membrane with porous structure,and reinforcement of PCL scaffold was achieved by embedding polyethylene terephthalate(PET) weft-knit tubular fabric. The aim of this paper is to study the variation tendency of the morphology and the mechanical properties of the sample with the changing of molecular weight. Weighing method was used to analyze the porosity of the sample,and scanning electron microscopy( SEM) images were taken to observe porous structure. The tensile and compressive strengths of the samples were tested by the universal mechanical tester and radial compression apparatus, respectively. And the results showed that the porosity and compressive strength were improved when increasing the molecular weight,and the elastic recovery rate was also improved slightly. However, molecular weight has little impact on the tensile strength properties,because the PET tubular fabric provides most of the strength support rather than PCL membrane.展开更多
基金Fundamental Research Funds for the Central UniversitiesNational Natural Science Foundation of China(No.31100682)
文摘A new scaffold has been developed,which made from poly(ε-caprolactone)( PCL) membrane with porous structure,and reinforcement of PCL scaffold was achieved by embedding polyethylene terephthalate(PET) weft-knit tubular fabric. The aim of this paper is to study the variation tendency of the morphology and the mechanical properties of the sample with the changing of molecular weight. Weighing method was used to analyze the porosity of the sample,and scanning electron microscopy( SEM) images were taken to observe porous structure. The tensile and compressive strengths of the samples were tested by the universal mechanical tester and radial compression apparatus, respectively. And the results showed that the porosity and compressive strength were improved when increasing the molecular weight,and the elastic recovery rate was also improved slightly. However, molecular weight has little impact on the tensile strength properties,because the PET tubular fabric provides most of the strength support rather than PCL membrane.