A space-based Very Long Baseline Interferometry (VLBI) program, named as the Cosmic Microscope, is proposed to involve dual VLBI telescopes in the space working together with giant ground-based telescopes (e.g., Squar...A space-based Very Long Baseline Interferometry (VLBI) program, named as the Cosmic Microscope, is proposed to involve dual VLBI telescopes in the space working together with giant ground-based telescopes (e.g., Square Kilometre Array, FAST, Arecibo) to image the low radio frequency Universe with the purpose of unraveling the compact structure of cosmic constituents including supermassive black holes and binaries, pulsars, astronomical masers and the underlying source, and exoplanets amongst others. The operational frequency bands are 30, 74, 330 and 1670 MHz, supporting broad science areas. The mission plans to launch two 30-m-diameter radio telescopes into 2 000 km×90 000 km elliptical orbits. The two telescopes can work in flexibly diverse modes,(i) Space-ground VLBI. The maximum space-ground baseline length is about100 000 km; it provides a high-dynamic-range imaging capacity with unprecedented high resolutions at low frequencies (0.3 mas at 1.67 GHz and 20 mas at 30 MHz) enabling studies of exoplanets and supermassive black hole binaries (which emit nanoHz gravitational waves),(ii) Space-space single-baseline VLBI. This unique baseline enables the detection of flaring hydroxyl masers, and more precise position measurement of pulsars and radio transients at mas level.(iii) Single dish mode, where each telescope can be used to monitor transient bursts and rapidly trigger follow-up VLBI observations. The large space telescope will also contribute in measuring and constraining the total angular power spectrum from the Epoch of Reionization. In short, the Cosmic Microscope offers astronomers the opportunity to conduct novel, frontier science.展开更多
文摘一直以来,射电天文装备不断得到升级和发展,以使其具有更好的观测性能,包括提高数据记录的时间和频率分辨率以及获得更高的接收和记录带宽等.然而与之形成矛盾的是:国际电信联盟(International Telecommunication Union,ITU)仅为射电天文分配了非常有限的频谱资源,导致的后果是射电观测设备不可避免地受到日益增强的非天文信号的影响,后者的来源主要是人类的通信活动和日常生活,这就构成了通常射电天文中所说的射频干扰(Radio Frequency Interference,RFI).射频干扰会降低数据质量甚至导致数据无效,对科学结果的影响越来越严重.对RFI消减的需求进行分析,总结了RFI的特性、抑制和消减的技术和方案,并介绍了一些有代表性的射电望远镜(或阵列)中采用的RFI消减方法;还分析比较了4种常用方案,即预防、预检测、预相关和后相关的优势和不足.对RFI进行准确的识别和标记是减少数据损失从而有效提高数据质量的关键,也是发展RFI消减技术的最终目的.通过研究不难发现,上述4种方案的组合运用将具有更高的实用价值.近几年来,随着高速数字信号处理和高性能计算的迅速发展,依赖大量计算的实时模式下的预检测以及离线模式下从大型望远镜阵列所产生的大规模干涉相关数据中检测RFI已经成为可能.
基金Supported with funding from the Ministry of Science and Technology of China(2018YFA0404600)the Chinese Academy of Sciences(114231KYSB20170003)
文摘A space-based Very Long Baseline Interferometry (VLBI) program, named as the Cosmic Microscope, is proposed to involve dual VLBI telescopes in the space working together with giant ground-based telescopes (e.g., Square Kilometre Array, FAST, Arecibo) to image the low radio frequency Universe with the purpose of unraveling the compact structure of cosmic constituents including supermassive black holes and binaries, pulsars, astronomical masers and the underlying source, and exoplanets amongst others. The operational frequency bands are 30, 74, 330 and 1670 MHz, supporting broad science areas. The mission plans to launch two 30-m-diameter radio telescopes into 2 000 km×90 000 km elliptical orbits. The two telescopes can work in flexibly diverse modes,(i) Space-ground VLBI. The maximum space-ground baseline length is about100 000 km; it provides a high-dynamic-range imaging capacity with unprecedented high resolutions at low frequencies (0.3 mas at 1.67 GHz and 20 mas at 30 MHz) enabling studies of exoplanets and supermassive black hole binaries (which emit nanoHz gravitational waves),(ii) Space-space single-baseline VLBI. This unique baseline enables the detection of flaring hydroxyl masers, and more precise position measurement of pulsars and radio transients at mas level.(iii) Single dish mode, where each telescope can be used to monitor transient bursts and rapidly trigger follow-up VLBI observations. The large space telescope will also contribute in measuring and constraining the total angular power spectrum from the Epoch of Reionization. In short, the Cosmic Microscope offers astronomers the opportunity to conduct novel, frontier science.