The separation of ethylene glycol(EG)and 1,2-butanediol(1,2-BDO)azeotrope in the synthesis process of EG via coal and biomass is becoming of increasing commercial and environmental importance.Selective adsorption is d...The separation of ethylene glycol(EG)and 1,2-butanediol(1,2-BDO)azeotrope in the synthesis process of EG via coal and biomass is becoming of increasing commercial and environmental importance.Selective adsorption is deemed as the most promising methods because of energy saving and environment favorable.In this paper,NaY zeolite was used to separate 1,2-BDO from EG,and its adsorption properties was then investigated.The isotherms of EG and 1,2-BDO in vapor and liquid phases from 298 to 328 K indicated that they fitted Langmuir model quite well,and the NaY zeolite absorbent favored EG more than 1,2-BDO.The Grand Canonical Monte Carlo(GCMC)and molecular dynamics(MD)simulation techniques were conducted to investigate the competition adsorption and diffusion characteristics in different adsorption regions.It was observed that EG and 1,2-BDO molecules all have the most probable locations of the center of the 12-membered ring near the Na cations.The diffusivities of EG are lower than those of 1,2-BDO at the same adsorption concentration.At last,the breakthrough curves of the binary mixture regressed from the empirical Dose–Response model in fixed-bed column showed that the adsorption selectivity of EG could reach to as high as 2.43,verified that the NaY zeolite could effectively separate EG from 1,2-BDO.This work is also helpful for further separation of other dihydric alcohol mixtures from coal and biomass fermentation.展开更多
Pakistan is a low income country with more than 10 million hepatitis C virus (HCV) infections and the burden is on continuous raise. Accurate viral genotyping is very critical for proper treatment of the infected indi...Pakistan is a low income country with more than 10 million hepatitis C virus (HCV) infections and the burden is on continuous raise. Accurate viral genotyping is very critical for proper treatment of the infected individuals as the sustained virological response of the standard antiviral interferon therapy is genotype dependent. We observed at our diagnostic center that 15.6% of HCV patient’s samples were not genotype-able by using Ohno et al method. The genotyped samples showed that 3a (68.3%) is the major prevalent genotype in Pakistan followed by 2a (10.3%), 3b (2.6%), 1b (1.5%), 2b (1.2%) and 1a (0.5%). Presence of large number of untypable HCV variants in the current study highlights an important issue of health care setup in Pakistan. Untypable HCV cases create difficulties in treatment of these patients. The problem of routine diagnostics setup of Pakistan should be addressed on priority basis to facilitate the medical professionals in patient’s treatment and to help in achieving the maximum sustained virological response.展开更多
The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for i...The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for indirect utilization of CO2 to produce hexamethylene-1,6-diisocyanate (HDI). In this work, a green route was developed for the synthesis of HD1 by thermal decomposition of HDC over Co3O4/ZSM-5 catalyst, using chlorobenzene as low boiling point solvent. Different metal oxide supported catalysts were prepared by incipient wetness impregnation (IWI), PEG-additive (PEG) and deposition precipitation with ammonia evaporation (DP) methods. Their catalytic performances for the thermal decomposition of HDC were tested. The catalyst screening results showed that Co3O4/ZSM-525 catalysts prepared by different methods showed different performances in the order of Co3O4/ZSM-5 25(PEG) 〉 Co3O4/ZSM-525(IWI) 〉 Co3O4/ZSM-525(DP). The physicochemical properties of Co3O4/ZSM- 52s catalyst were characterized by XRD, FTIR, N2 adsorption-desorption measurements, NH3-TPD and XPS. The superior catalytic performance of Co3O4/ZSM-52S(PEG) catalyst was attributed to its relative surface content of Co3 +, surface lattice oxygen content and total acidity. Under the optimized reaction conditions: 6.5% HDC concentration in chlorobenzene, 1 wt% Co3O4/ZSM-525(PEG) catalyst, 250℃ temperature, 2.5 h time, 800 ml.min 1 nitrogen flow rate and 1.0 MPa pressure, the HDC conversion and HDI yield could reach 100% and 92.8% respectively. The Co3O4/ZSM-525(PEG) catalyst could be facilely separated from the reaction mixture, and reused without degradation in catalytic performance. Furthermore, a possible reaction mechanism was proposed based on the physicochemical properties of the Co3O4/ZSM-5 25 catalysts.展开更多
Thin-film catalysts are recently recognized as promising catalysts due to their reduced amount of materials and good catalytic activity,leading to low-cost and high-efficiency catalysts.A series of CuFeO_(x)thin-film ...Thin-film catalysts are recently recognized as promising catalysts due to their reduced amount of materials and good catalytic activity,leading to low-cost and high-efficiency catalysts.A series of CuFeO_(x)thin-film catalysts were prepared with different Fe contents using a one-step method as well as tested for the catalytic reduction of nitrous oxide(N_(2)O)in the presence of CH_(4)at a high GH SV of 185000 mL/(g·h).The increase of iron strongly affects the dispersion and leads to the creation of a less-active segregated Fe_(2)O_(3)phase,which was confirmed by XRD,EDX,and XPS outcomes.The results show that the synergistic properties between Cu and Fe,which affect the CuFeOxfilm catalysts in many aspects,such as the hollow-like texture,specific surface area,nano-crystallite size,the surface contents of Cu^(+),Fe^(3+),and oxygen species,the reductive strength and the strong active sites on the surface.Using DFT calculations,the adsorption and decomposition energy profiles of N_(2)O on the CuFeO_(2)(012)surface model were explored.The surface Fe-site and hollow-site are active for N_(2)O decomposition,and the decomposition energy barriers on the Fe-site and the hollow-site are 1.02 eV and 1.25 eV respectively at 0 K.The strategy adopted here to tailor the activity through low-doping Fe-oxide catalysts could establish a promising way to improve the catalytic reduction of N_(2)O with CH_(4).展开更多
In this research paper, the forced convective heat transfer enhancement of a Suzuki Mehran(VXR) 2016 radiator(heat exchanger) along with pressure drop and friction factor by utilizing Zinc oxide(Zn O) water based nano...In this research paper, the forced convective heat transfer enhancement of a Suzuki Mehran(VXR) 2016 radiator(heat exchanger) along with pressure drop and friction factor by utilizing Zinc oxide(Zn O) water based nanofluids has been experimentally studied. Three types of nanofluids with different volumetric concentrations of Zn O nanoparticles(0–0.3%) were employed in order to understand its effect on heat transfer enhancement. The experimental setup was completely designed as closely as possible to the car cooling system. The experimentation has been done under laminar flow conditions(186≤Re≤1127) at different fluid volume flow rates(2–12 L/min) and constant fluid inlet temperature(70°C) to the automobile radiator. A maximum enhancement in heat transfer rate, overall heat transfer coefficient and Nusselt number was obtained up to 41%, 50% and 31% by using nanofluid with 0.2% volumetric concentration of nanoparticles respectively. On the other hand, the mean enhancement in pressure drop and friction factor was obtained up to 47% and 46% by using nanofluid with the same volumetric concentration of nanoparticles i.e. 0.2% respectively. The experimental results also revealed that the heat transfer rate, overall heat transfer coefficient and Nusselt number of nanofluids increases by increasing the volume flow rates and volumetric concentration of nanoparticles. However, these thermal performance parameters of nanofluids started to decline when the volumetric concentration of nanoparticles was increased from 0.2% to 0.3%. Furthermore, pressure drop and friction factor of nanofluids increase by increasing the volumetric concentration of nanoparticles, while pressure drop increases and friction factor decreases by increasing the volume flow rate of nanofluids respectively. At the end, the thermal efficiency of automobile radiator with high cooling rates was obtained by using nanofluid with 0.2% volumetric concentration of nanoparticles.展开更多
A set of mono-and bimetallic(Zn-Co) supported ZSM-5 catalysts was first prepared by PEG-additive method. The physicochemical properties of the catalysts were investigated by FTIR, XPS, XRD, N2adsorption-desorption m...A set of mono-and bimetallic(Zn-Co) supported ZSM-5 catalysts was first prepared by PEG-additive method. The physicochemical properties of the catalysts were investigated by FTIR, XPS, XRD, N2adsorption-desorption measurements, SEM, EDS and NH3-TPD techniques. The physicochemical properties showed that the Zn Co2O4 spinel oxide was formed on the ZSM-5 support and provided effectual synergetic effect between Zn and Co species for the bimetallic catalyst. Furthermore, bimetallic supported ZSM-5 catalyst exhibited weak, moderate and strong acidic sites, while the monometallic supported ZSM-5 catalyst showed only weak and moderate or strong acidic sites. Their catalytic performances for thermal decomposition of hexamethylene–1,6–dicarbamate(HDC) to hexamethylene–1,6–diisocyanate(HDI) were then studied. It was found that the bimetallic supported ZSM-5 catalysts,especially Zn-2Co/ZSM-5 catalyst showed excellent catalytic performance due to the good synergetic effect between Co and Zn species, which provided a suitable contribution of acidic sites. HDC conversion of 100% with HDI selectivity of 91.2% and by-products selectivity of 1.3% could be achieved within short reaction time of 2.5 h over Zn-2Co/ZSM-5 catalyst.展开更多
基金the National Natural Science Foundation of China(21576272)“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDA 21030600,Science and Technology Service Network Initiative,Chinese Academy of Sciences(KFJ-STS-QYZD-138).
文摘The separation of ethylene glycol(EG)and 1,2-butanediol(1,2-BDO)azeotrope in the synthesis process of EG via coal and biomass is becoming of increasing commercial and environmental importance.Selective adsorption is deemed as the most promising methods because of energy saving and environment favorable.In this paper,NaY zeolite was used to separate 1,2-BDO from EG,and its adsorption properties was then investigated.The isotherms of EG and 1,2-BDO in vapor and liquid phases from 298 to 328 K indicated that they fitted Langmuir model quite well,and the NaY zeolite absorbent favored EG more than 1,2-BDO.The Grand Canonical Monte Carlo(GCMC)and molecular dynamics(MD)simulation techniques were conducted to investigate the competition adsorption and diffusion characteristics in different adsorption regions.It was observed that EG and 1,2-BDO molecules all have the most probable locations of the center of the 12-membered ring near the Na cations.The diffusivities of EG are lower than those of 1,2-BDO at the same adsorption concentration.At last,the breakthrough curves of the binary mixture regressed from the empirical Dose–Response model in fixed-bed column showed that the adsorption selectivity of EG could reach to as high as 2.43,verified that the NaY zeolite could effectively separate EG from 1,2-BDO.This work is also helpful for further separation of other dihydric alcohol mixtures from coal and biomass fermentation.
文摘Pakistan is a low income country with more than 10 million hepatitis C virus (HCV) infections and the burden is on continuous raise. Accurate viral genotyping is very critical for proper treatment of the infected individuals as the sustained virological response of the standard antiviral interferon therapy is genotype dependent. We observed at our diagnostic center that 15.6% of HCV patient’s samples were not genotype-able by using Ohno et al method. The genotyped samples showed that 3a (68.3%) is the major prevalent genotype in Pakistan followed by 2a (10.3%), 3b (2.6%), 1b (1.5%), 2b (1.2%) and 1a (0.5%). Presence of large number of untypable HCV variants in the current study highlights an important issue of health care setup in Pakistan. Untypable HCV cases create difficulties in treatment of these patients. The problem of routine diagnostics setup of Pakistan should be addressed on priority basis to facilitate the medical professionals in patient’s treatment and to help in achieving the maximum sustained virological response.
基金National Natural Science Foundation of China(21476244 and 21406245)Youth Innovation Promotion Association CAS
文摘The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for indirect utilization of CO2 to produce hexamethylene-1,6-diisocyanate (HDI). In this work, a green route was developed for the synthesis of HD1 by thermal decomposition of HDC over Co3O4/ZSM-5 catalyst, using chlorobenzene as low boiling point solvent. Different metal oxide supported catalysts were prepared by incipient wetness impregnation (IWI), PEG-additive (PEG) and deposition precipitation with ammonia evaporation (DP) methods. Their catalytic performances for the thermal decomposition of HDC were tested. The catalyst screening results showed that Co3O4/ZSM-525 catalysts prepared by different methods showed different performances in the order of Co3O4/ZSM-5 25(PEG) 〉 Co3O4/ZSM-525(IWI) 〉 Co3O4/ZSM-525(DP). The physicochemical properties of Co3O4/ZSM- 52s catalyst were characterized by XRD, FTIR, N2 adsorption-desorption measurements, NH3-TPD and XPS. The superior catalytic performance of Co3O4/ZSM-52S(PEG) catalyst was attributed to its relative surface content of Co3 +, surface lattice oxygen content and total acidity. Under the optimized reaction conditions: 6.5% HDC concentration in chlorobenzene, 1 wt% Co3O4/ZSM-525(PEG) catalyst, 250℃ temperature, 2.5 h time, 800 ml.min 1 nitrogen flow rate and 1.0 MPa pressure, the HDC conversion and HDI yield could reach 100% and 92.8% respectively. The Co3O4/ZSM-525(PEG) catalyst could be facilely separated from the reaction mixture, and reused without degradation in catalytic performance. Furthermore, a possible reaction mechanism was proposed based on the physicochemical properties of the Co3O4/ZSM-5 25 catalysts.
基金financially supported by the MOST(2022YFB4003900/2021YFA0716200)Beijing Municipal Natural Science Foundation(JQ20017)National Natural Science Foundation of China NSFC(No.52161145105/51976216/51888103)。
文摘Thin-film catalysts are recently recognized as promising catalysts due to their reduced amount of materials and good catalytic activity,leading to low-cost and high-efficiency catalysts.A series of CuFeO_(x)thin-film catalysts were prepared with different Fe contents using a one-step method as well as tested for the catalytic reduction of nitrous oxide(N_(2)O)in the presence of CH_(4)at a high GH SV of 185000 mL/(g·h).The increase of iron strongly affects the dispersion and leads to the creation of a less-active segregated Fe_(2)O_(3)phase,which was confirmed by XRD,EDX,and XPS outcomes.The results show that the synergistic properties between Cu and Fe,which affect the CuFeOxfilm catalysts in many aspects,such as the hollow-like texture,specific surface area,nano-crystallite size,the surface contents of Cu^(+),Fe^(3+),and oxygen species,the reductive strength and the strong active sites on the surface.Using DFT calculations,the adsorption and decomposition energy profiles of N_(2)O on the CuFeO_(2)(012)surface model were explored.The surface Fe-site and hollow-site are active for N_(2)O decomposition,and the decomposition energy barriers on the Fe-site and the hollow-site are 1.02 eV and 1.25 eV respectively at 0 K.The strategy adopted here to tailor the activity through low-doping Fe-oxide catalysts could establish a promising way to improve the catalytic reduction of N_(2)O with CH_(4).
基金Higher Education CommissionIslamabadPakistan for providing financial support[Grant No.21-2245/SRGP/HRD/HEC/2018]。
文摘In this research paper, the forced convective heat transfer enhancement of a Suzuki Mehran(VXR) 2016 radiator(heat exchanger) along with pressure drop and friction factor by utilizing Zinc oxide(Zn O) water based nanofluids has been experimentally studied. Three types of nanofluids with different volumetric concentrations of Zn O nanoparticles(0–0.3%) were employed in order to understand its effect on heat transfer enhancement. The experimental setup was completely designed as closely as possible to the car cooling system. The experimentation has been done under laminar flow conditions(186≤Re≤1127) at different fluid volume flow rates(2–12 L/min) and constant fluid inlet temperature(70°C) to the automobile radiator. A maximum enhancement in heat transfer rate, overall heat transfer coefficient and Nusselt number was obtained up to 41%, 50% and 31% by using nanofluid with 0.2% volumetric concentration of nanoparticles respectively. On the other hand, the mean enhancement in pressure drop and friction factor was obtained up to 47% and 46% by using nanofluid with the same volumetric concentration of nanoparticles i.e. 0.2% respectively. The experimental results also revealed that the heat transfer rate, overall heat transfer coefficient and Nusselt number of nanofluids increases by increasing the volume flow rates and volumetric concentration of nanoparticles. However, these thermal performance parameters of nanofluids started to decline when the volumetric concentration of nanoparticles was increased from 0.2% to 0.3%. Furthermore, pressure drop and friction factor of nanofluids increase by increasing the volumetric concentration of nanoparticles, while pressure drop increases and friction factor decreases by increasing the volume flow rate of nanofluids respectively. At the end, the thermal efficiency of automobile radiator with high cooling rates was obtained by using nanofluid with 0.2% volumetric concentration of nanoparticles.
基金supported by National Natural Science Foundation of China(Nos.21476244 and 21406245)Youth Innovation Promotion Association CAS
文摘A set of mono-and bimetallic(Zn-Co) supported ZSM-5 catalysts was first prepared by PEG-additive method. The physicochemical properties of the catalysts were investigated by FTIR, XPS, XRD, N2adsorption-desorption measurements, SEM, EDS and NH3-TPD techniques. The physicochemical properties showed that the Zn Co2O4 spinel oxide was formed on the ZSM-5 support and provided effectual synergetic effect between Zn and Co species for the bimetallic catalyst. Furthermore, bimetallic supported ZSM-5 catalyst exhibited weak, moderate and strong acidic sites, while the monometallic supported ZSM-5 catalyst showed only weak and moderate or strong acidic sites. Their catalytic performances for thermal decomposition of hexamethylene–1,6–dicarbamate(HDC) to hexamethylene–1,6–diisocyanate(HDI) were then studied. It was found that the bimetallic supported ZSM-5 catalysts,especially Zn-2Co/ZSM-5 catalyst showed excellent catalytic performance due to the good synergetic effect between Co and Zn species, which provided a suitable contribution of acidic sites. HDC conversion of 100% with HDI selectivity of 91.2% and by-products selectivity of 1.3% could be achieved within short reaction time of 2.5 h over Zn-2Co/ZSM-5 catalyst.