期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Synthesizing Land-cover Classification Method Based on Google Earth Engine: A Case Study in Nzhelele and Levhuvu Catchments, South Africa 被引量:5
1
作者 ZENG Hongwei WU Bingfang +5 位作者 WANG Shuai musakwa walter TIAN Fuyou MASHIMBYE Zama Eric POONA Nitesh SYNDEY Mavengahama 《Chinese Geographical Science》 SCIE CSCD 2020年第3期397-409,共13页
This study designed an approach to derive land-cover in the South Africa with insufficient ground samples, and made a case demonstration in Nzhelele and Levhuvu catchments, South Africa. The method was developed based... This study designed an approach to derive land-cover in the South Africa with insufficient ground samples, and made a case demonstration in Nzhelele and Levhuvu catchments, South Africa. The method was developed based on an integration of Landsat 8, Sentinel-1, and Shuttle Radar Topography Mission(SRTM) Digital Elevation Model(DEM), and the Google Earth Engine(GEE) platform. Random forest classifier with 300 trees is employed as land-cover classification model. In order to overcome the defect of insufficient ground data, the stratified sampling method was used to generate the training and validation samples from the existing land-cover product. Likewise, in order to recognize different land-cover categories, the percentile and monthly median composites were employed to expand input metrics of random forest classifier. Results showed that the overall accuracy of the land-cover of Nzhelele and Levhuvu catchments, South Africa in 2017–2018 reached to 76.43%. Three important results can be drawn from our research. 1) The participation of Sentinel-1 data can slightly improve overall accuracy of land-cover while its contribution on land-cover classification varied with land types. 2) Under-fitting problem was observed in the training of non-dominant land-cover categories using the random sampling, the stratified sampling method is recommended to make sure the classification accuracy of non-dominant classes. 3) When related reflectance bands participated in the training process, individual Normalized Difference Vegetation index(NDVI), Enhanced Vegetation Index(EVI), Soil Adjusted Vegetation Index(SAVI), Normalized Difference Built-up Index(NDBI) have little effect on final land-cover classification result. 展开更多
关键词 land-cover classification random forest percentile composite Landsat 8 Sentinel-1 Google Earth Engine(GEE)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部