Hourly outgoing longwave radiation (OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite (COMS) has been retrieved since June 2010.The COMS OLR retrieval algorithms are based o...Hourly outgoing longwave radiation (OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite (COMS) has been retrieved since June 2010.The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels.This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm (OLR12.0 using the 12.0 μm channel) and three multiple-channel algorithms (OLR10.8+12.0 using the 10.8 and 12.0 pm channels; OLR6.7+10.8 using the 6.7 and 10.8 μm channels; and OLRAll using the 6.7,10.8,and 12.0 μm channels).The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth's Radiant Energy System (CERES) over the full COMS field of view [roughly (50°S-50°N,70°-170°E)] during April 2011.Validation results show that the root-mean-square errors of COMS OLRs are 5-7 W m-2,which indicates good agreement with CERES OLR over the vast domain.OLR6.7+10.8 and OLRAll have much smaller errors (~ 6 W m-2) than OLR12.0 and OLR10.8+12.0 (~ 8 W m-2).Moreover,the small errors of OLR6.7+10.8 and OLRAll are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration.These results indicate a noteworthy role of the 6.7 μm water vapor absorption channel in improving the accuracy of the OLRs.The dependence of the accuracy of COMS OLRs on various surface,atmospheric,and observational conditions is also discussed.展开更多
A general framework in which Ocean Heat Content(OHC) may modulate tropical cyclone intensification and decay in conjunction with Vertical Wind Shear(VWS) as the primary environmental control is formulated in terms of ...A general framework in which Ocean Heat Content(OHC) may modulate tropical cyclone intensification and decay in conjunction with Vertical Wind Shear(VWS) as the primary environmental control is formulated in terms of a two-dimensional phase diagram.Case studies of the life cycles of three tropical cyclones during the Impact of Typhoons on the Ocean in the Pacific(ITOP) field experiment during August-October 2010 are selected as examples owing to numerous Air-deployed e Xpendable Bathy Thermographs(AXBTs) and special atmospheric observations.Vertical wind shears calculated from European Center for Medium-range Weather Forecasting analyses within a 3°-5° lat.annulus around the center may not properly represent the VWS in nonuniform,asymmetric,and time-varying conditions in the western North Pacific.As expected,VWS is the primary environmental control during the formation and early intensification stage over regions of large OHC,and during the decay phase over regions of small OHC.The challenging intensity forecasting problems are in the intermediate conditions of an intense tropical cyclone moving slowly over a region of low to moderate OHC when the negative feedback from the ocean may or may not lead to a decrease in intensity.展开更多
This review article summarizes recent(2014-2019)advances in our understanding of tropical cyclogenesis,stemming from activities at the ninth International Workshop on Tropical Cyclones.Tropical cyclogenesis involves t...This review article summarizes recent(2014-2019)advances in our understanding of tropical cyclogenesis,stemming from activities at the ninth International Workshop on Tropical Cyclones.Tropical cyclogenesis involves the interaction of dynamic and thermodynamic processes at multiple spatio-temporal scales.Studies have furthered our understanding of how tropical cyclogenesis may be affected by external processes,such as intraseasonal oscillations,monsoon circulations,the intertropical convergence zone,and midlatitude troughs and cutoff lows.Additionally,studies have furthered our understanding of how tropical cyclogenesis may be affected by internal processes,such as the organization of deep convection;the evolution of the"pouch"structure;the role of friction;the development of the moist,warm core;the importance of surface fluxes;and the role of the mid-level vortex.A relatively recent class of idealized,numerical simulations of tropical cyclogenesis in radiativeconvective equilibrium have highlighted the potential importance of radiative feedbacks on tropical cyclogenesis.We also offer some recommendations to the community on future directions for tropical cyclogenesis research.展开更多
基金supported by the Korea Meteorological Administration Research and Development Program (Grant No. CATER 2012-2040)
文摘Hourly outgoing longwave radiation (OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite (COMS) has been retrieved since June 2010.The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels.This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm (OLR12.0 using the 12.0 μm channel) and three multiple-channel algorithms (OLR10.8+12.0 using the 10.8 and 12.0 pm channels; OLR6.7+10.8 using the 6.7 and 10.8 μm channels; and OLRAll using the 6.7,10.8,and 12.0 μm channels).The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth's Radiant Energy System (CERES) over the full COMS field of view [roughly (50°S-50°N,70°-170°E)] during April 2011.Validation results show that the root-mean-square errors of COMS OLRs are 5-7 W m-2,which indicates good agreement with CERES OLR over the vast domain.OLR6.7+10.8 and OLRAll have much smaller errors (~ 6 W m-2) than OLR12.0 and OLR10.8+12.0 (~ 8 W m-2).Moreover,the small errors of OLR6.7+10.8 and OLRAll are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration.These results indicate a noteworthy role of the 6.7 μm water vapor absorption channel in improving the accuracy of the OLRs.The dependence of the accuracy of COMS OLRs on various surface,atmospheric,and observational conditions is also discussed.
文摘A general framework in which Ocean Heat Content(OHC) may modulate tropical cyclone intensification and decay in conjunction with Vertical Wind Shear(VWS) as the primary environmental control is formulated in terms of a two-dimensional phase diagram.Case studies of the life cycles of three tropical cyclones during the Impact of Typhoons on the Ocean in the Pacific(ITOP) field experiment during August-October 2010 are selected as examples owing to numerous Air-deployed e Xpendable Bathy Thermographs(AXBTs) and special atmospheric observations.Vertical wind shears calculated from European Center for Medium-range Weather Forecasting analyses within a 3°-5° lat.annulus around the center may not properly represent the VWS in nonuniform,asymmetric,and time-varying conditions in the western North Pacific.As expected,VWS is the primary environmental control during the formation and early intensification stage over regions of large OHC,and during the decay phase over regions of small OHC.The challenging intensity forecasting problems are in the intermediate conditions of an intense tropical cyclone moving slowly over a region of low to moderate OHC when the negative feedback from the ocean may or may not lead to a decrease in intensity.
文摘This review article summarizes recent(2014-2019)advances in our understanding of tropical cyclogenesis,stemming from activities at the ninth International Workshop on Tropical Cyclones.Tropical cyclogenesis involves the interaction of dynamic and thermodynamic processes at multiple spatio-temporal scales.Studies have furthered our understanding of how tropical cyclogenesis may be affected by external processes,such as intraseasonal oscillations,monsoon circulations,the intertropical convergence zone,and midlatitude troughs and cutoff lows.Additionally,studies have furthered our understanding of how tropical cyclogenesis may be affected by internal processes,such as the organization of deep convection;the evolution of the"pouch"structure;the role of friction;the development of the moist,warm core;the importance of surface fluxes;and the role of the mid-level vortex.A relatively recent class of idealized,numerical simulations of tropical cyclogenesis in radiativeconvective equilibrium have highlighted the potential importance of radiative feedbacks on tropical cyclogenesis.We also offer some recommendations to the community on future directions for tropical cyclogenesis research.