In order to investigate the shrinking and swelling behavior of wood at a non-equilibrium state, the moisture sorptlon processes of wood under constant and changing conditions were studied. For the static sorption expe...In order to investigate the shrinking and swelling behavior of wood at a non-equilibrium state, the moisture sorptlon processes of wood under constant and changing conditions were studied. For the static sorption experiment, Chinese fir (Cunninghamia lanceolata) specimens were subjected to the adsorption processes at 25℃, 10 different relative humidity environments and the moisture contents were measured at distinct time intervals of adsorption processes. For the dynamic sorption experiment, the specimens were exposed to periodically and linearly varying relative humidity between 45% and 75% at 25℃. Moisture content as well as radial and tangential dimensional changes in response to the changing relative humidity were measured. The main results from the experiments indicated that: the moisture sorption isotherms of Chinese fir at equilibrium state and different stages of adsorption processes could be characterized by S-shape curves. From the non-equilibrium state to the equilibrium state, the sigmoid moisture sorption isotherms changed from smooth, gradually increasing values to a steep rise at 100% humidity. Furthermore, under dynamic conditions with a constant temperature and a linearly and periodically varying relative humidity, the moisture content as well as radial and tangential dimensional changes of the specimens generally waved but lagged behind the relative humidity change.展开更多
文摘In order to investigate the shrinking and swelling behavior of wood at a non-equilibrium state, the moisture sorptlon processes of wood under constant and changing conditions were studied. For the static sorption experiment, Chinese fir (Cunninghamia lanceolata) specimens were subjected to the adsorption processes at 25℃, 10 different relative humidity environments and the moisture contents were measured at distinct time intervals of adsorption processes. For the dynamic sorption experiment, the specimens were exposed to periodically and linearly varying relative humidity between 45% and 75% at 25℃. Moisture content as well as radial and tangential dimensional changes in response to the changing relative humidity were measured. The main results from the experiments indicated that: the moisture sorption isotherms of Chinese fir at equilibrium state and different stages of adsorption processes could be characterized by S-shape curves. From the non-equilibrium state to the equilibrium state, the sigmoid moisture sorption isotherms changed from smooth, gradually increasing values to a steep rise at 100% humidity. Furthermore, under dynamic conditions with a constant temperature and a linearly and periodically varying relative humidity, the moisture content as well as radial and tangential dimensional changes of the specimens generally waved but lagged behind the relative humidity change.