In the paper an important issue of vibrations of the transmission line in real conditions was analyzed.Such research was carried out by the authors of this paper taking into account the cross-section of the cable bein...In the paper an important issue of vibrations of the transmission line in real conditions was analyzed.Such research was carried out by the authors of this paper taking into account the cross-section of the cable being in use on the transmission line.Analysis was performed for the modern ACSR high voltage transmission line with span of 213.0 m.The purpose of the investigation was to analyze the vibrations of the power transmission line in the natural environment and compare with the results obtained in the numerical simulations.Analysis was performed for natural and wind excited vibrations.The numerical model was made using the Spectral Element Method.In the spectral model,for various parameters of stiffness,damping and tension force,the system response was checked and compared with the results of the accelerations obtained in the situ measurements.A frequency response functions(FRF)were calculated.The credibility of the model was assessed through a validation process carried out by comparing graphical plots of FRF functions and numerical values expressing differences in acceleration amplitude(MSG),phase angle differences(PSG)and differences in acceleration and phase angle total(CSG)values.Particular attention was paid to the hysteretic damping analysis.Sensitivity of the wave number was performed for changing of the tension force and section area of the cable.The next aspect constituting the purpose of this paper was to present the wide possibilities of modelling and simulation of slender conductors using the Spectral Element Method.The obtained results show very good accuracy in the range of both experimental measurements as well as simulation analysis.The paper emphasizes the ease with which the sensitivity of the conductor and its response to changes in density of spectral mesh division,cable cross-section,tensile strength or material damping can be studied.展开更多
文摘In the paper an important issue of vibrations of the transmission line in real conditions was analyzed.Such research was carried out by the authors of this paper taking into account the cross-section of the cable being in use on the transmission line.Analysis was performed for the modern ACSR high voltage transmission line with span of 213.0 m.The purpose of the investigation was to analyze the vibrations of the power transmission line in the natural environment and compare with the results obtained in the numerical simulations.Analysis was performed for natural and wind excited vibrations.The numerical model was made using the Spectral Element Method.In the spectral model,for various parameters of stiffness,damping and tension force,the system response was checked and compared with the results of the accelerations obtained in the situ measurements.A frequency response functions(FRF)were calculated.The credibility of the model was assessed through a validation process carried out by comparing graphical plots of FRF functions and numerical values expressing differences in acceleration amplitude(MSG),phase angle differences(PSG)and differences in acceleration and phase angle total(CSG)values.Particular attention was paid to the hysteretic damping analysis.Sensitivity of the wave number was performed for changing of the tension force and section area of the cable.The next aspect constituting the purpose of this paper was to present the wide possibilities of modelling and simulation of slender conductors using the Spectral Element Method.The obtained results show very good accuracy in the range of both experimental measurements as well as simulation analysis.The paper emphasizes the ease with which the sensitivity of the conductor and its response to changes in density of spectral mesh division,cable cross-section,tensile strength or material damping can be studied.