We report where and how ions are accelerated in the proximity of earthward propagating dipolarization fronts (DFs) in the magnetotail during a magnetospheric substorm on February 15, 2008. Two DFs were observed by m...We report where and how ions are accelerated in the proximity of earthward propagating dipolarization fronts (DFs) in the magnetotail during a magnetospheric substorm on February 15, 2008. Two DFs were observed by multiple THEMIS space- craft in the near-Earth magnetotail (-10 Re). We studied the ion dynamics associated with these DFs by comparing observed results with large scale kinetic (LSK) simulation results. The LSK simulation reproduced the sudden ion energy flux enhance- ment concurrent with the arrival of the DF at the satellite locations. We found that ions can be accelerated to more than 100 keV energy at the DF. These ions were initially non-adiabatically accelerated near magnetic reconnection site and then still non-adiabatically accelerated at the DF structure.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.41174147,41274170,41331070)China Postdoctoral Science Foundation Funded Project,and the Fundamental Research Fund for theCentral Universities(Grant No.2042014kf0017)
文摘We report where and how ions are accelerated in the proximity of earthward propagating dipolarization fronts (DFs) in the magnetotail during a magnetospheric substorm on February 15, 2008. Two DFs were observed by multiple THEMIS space- craft in the near-Earth magnetotail (-10 Re). We studied the ion dynamics associated with these DFs by comparing observed results with large scale kinetic (LSK) simulation results. The LSK simulation reproduced the sudden ion energy flux enhance- ment concurrent with the arrival of the DF at the satellite locations. We found that ions can be accelerated to more than 100 keV energy at the DF. These ions were initially non-adiabatically accelerated near magnetic reconnection site and then still non-adiabatically accelerated at the DF structure.