The present study is aimed to serve a small community living on Stand-Alone Solar-Energy (S.A.S.E.S) system. As a basis for the study 1 cubic meter of hydrogen is to be produced by electrolysis in 5 hrs that requires ...The present study is aimed to serve a small community living on Stand-Alone Solar-Energy (S.A.S.E.S) system. As a basis for the study 1 cubic meter of hydrogen is to be produced by electrolysis in 5 hrs that requires energy input of 5 KW-hr. The proposed system consists of the following main components: photovoltaic module, water electrolyzer and fuel cell. Solar hydrogen production by water electrolysis is described and design parameters are specified. Economic feasibility of the proposed system is evaluated. The projected cost of hydrogen is calculated and found to be 5 cents/ft3.展开更多
In this paper, the concept of “green processing” will be applied, while explaining the role of sustainable development strategy with respect to the environmental issue. Two parameters are considered in the study by ...In this paper, the concept of “green processing” will be applied, while explaining the role of sustainable development strategy with respect to the environmental issue. Two parameters are considered in the study by utilizing carbon dioxide and reject brine from desalination plants as raw materials to produce valuable chemical products and partially desalinated water.展开更多
文摘The present study is aimed to serve a small community living on Stand-Alone Solar-Energy (S.A.S.E.S) system. As a basis for the study 1 cubic meter of hydrogen is to be produced by electrolysis in 5 hrs that requires energy input of 5 KW-hr. The proposed system consists of the following main components: photovoltaic module, water electrolyzer and fuel cell. Solar hydrogen production by water electrolysis is described and design parameters are specified. Economic feasibility of the proposed system is evaluated. The projected cost of hydrogen is calculated and found to be 5 cents/ft3.
文摘In this paper, the concept of “green processing” will be applied, while explaining the role of sustainable development strategy with respect to the environmental issue. Two parameters are considered in the study by utilizing carbon dioxide and reject brine from desalination plants as raw materials to produce valuable chemical products and partially desalinated water.