The El-Rahawy drain, is the major source of pollution along the Rosetta branch, receives primary treated wastewater from the Abu-Rawash Wastewater Treatment Plant (WWTP). The main purpose of this research was to manag...The El-Rahawy drain, is the major source of pollution along the Rosetta branch, receives primary treated wastewater from the Abu-Rawash Wastewater Treatment Plant (WWTP). The main purpose of this research was to manage water quality at the Rosetta branch by improving effluent water quality at the Abu-Rawash WWTP. This research involved attempting to determine the optimal dose of aluminum chloride (AlCl3) to reach an acceptable treatment at the Abu-Rawash WWTP. A dose of 2.0 mg of AlCl3 for each liter of wastewater was selected. Another approach involves discharging flow from Al-Buhairi Water Canal to the El-Rahawy drain in order to increase the dissolved oxygen (DO) concentration and reduce pollutant concentrations at the El-Rahawy drain. Applying these approaches will significantly improve water quality at the El-Rahawy drain. The river pollutant (RP) modeling was also used to study the effect of improving water quality at the El-Rahawy drain on the Rosetta branch water quality. The RP modeling showed that applying the proposed solutions will significantly improve water quality at the Rosetta branch.展开更多
文摘The El-Rahawy drain, is the major source of pollution along the Rosetta branch, receives primary treated wastewater from the Abu-Rawash Wastewater Treatment Plant (WWTP). The main purpose of this research was to manage water quality at the Rosetta branch by improving effluent water quality at the Abu-Rawash WWTP. This research involved attempting to determine the optimal dose of aluminum chloride (AlCl3) to reach an acceptable treatment at the Abu-Rawash WWTP. A dose of 2.0 mg of AlCl3 for each liter of wastewater was selected. Another approach involves discharging flow from Al-Buhairi Water Canal to the El-Rahawy drain in order to increase the dissolved oxygen (DO) concentration and reduce pollutant concentrations at the El-Rahawy drain. Applying these approaches will significantly improve water quality at the El-Rahawy drain. The river pollutant (RP) modeling was also used to study the effect of improving water quality at the El-Rahawy drain on the Rosetta branch water quality. The RP modeling showed that applying the proposed solutions will significantly improve water quality at the Rosetta branch.