期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran 被引量:15
1
作者 Phuong Thao Thi Ngo mahdi panahi +4 位作者 Khabat Khosravi Omid Ghorbanzadeh Narges Kariminejad Artemi Cerda Saro Lee 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期505-519,共15页
The identification of landslide-prone areas is an essential step in landslide hazard assessment and mitigation of landslide-related losses.In this study,we applied two novel deep learning algorithms,the recurrent neur... The identification of landslide-prone areas is an essential step in landslide hazard assessment and mitigation of landslide-related losses.In this study,we applied two novel deep learning algorithms,the recurrent neural network(RNN)and convolutional neural network(CNN),for national-scale landslide susceptibility mapping of Iran.We prepared a dataset comprising 4069 historical landslide locations and 11 conditioning factors(altitude,slope degree,profile curvature,distance to river,aspect,plan curvature,distance to road,distance to fault,rainfall,geology and land-sue)to construct a geospatial database and divided the data into the training and the testing dataset.We then developed RNN and CNN algorithms to generate landslide susceptibility maps of Iran using the training dataset.We calculated the receiver operating characteristic(ROC)curve and used the area under the curve(AUC)for the quantitative evaluation of the landslide susceptibility maps using the testing dataset.Better performance in both the training and testing phases was provided by the RNN algorithm(AUC=0.88)than by the CNN algorithm(AUC=0.85).Finally,we calculated areas of susceptibility for each province and found that 6%and 14%of the land area of Iran is very highly and highly susceptible to future landslide events,respectively,with the highest susceptibility in Chaharmahal and Bakhtiari Province(33.8%).About 31%of cities of Iran are located in areas with high and very high landslide susceptibility.The results of the present study will be useful for the development of landslide hazard mitigation strategies. 展开更多
关键词 CNN RNN Deep learning LANDSLIDE Iran
下载PDF
Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer 被引量:9
2
作者 Wei Chen Xi Chen +2 位作者 Jianbing Peng mahdi panahi Saro Lee 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期93-107,共15页
As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been ... As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been the ability to predict landslide susceptibility,which can be used to design schemes of land exploitation and urban development in mountainous areas.In this study,the teaching-learning-based optimization(TLBO)and satin bowerbird optimizer(SBO)algorithms were applied to optimize the adaptive neuro-fuzzy inference system(ANFIS)model for landslide susceptibility mapping.In the study area,152 landslides were identified and randomly divided into two groups as training(70%)and validation(30%)dataset.Additionally,a total of fifteen landslide influencing factors were selected.The relative importance and weights of various influencing factors were determined using the step-wise weight assessment ratio analysis(SWARA)method.Finally,the comprehensive performance of the two models was validated and compared using various indexes,such as the root mean square error(RMSE),processing time,convergence,and area under receiver operating characteristic curves(AUROC).The results demonstrated that the AUROC values of the ANFIS,ANFIS-TLBO and ANFIS-SBO models with the training data were 0.808,0.785 and 0.755,respectively.In terms of the validation dataset,the ANFISSBO model exhibited a higher AUROC value of 0.781,while the AUROC value of the ANFIS-TLBO and ANFIS models were 0.749 and 0.681,respectively.Moreover,the ANFIS-SBO model showed lower RMSE values for the validation dataset,indicating that the SBO algorithm had a better optimization capability.Meanwhile,the processing time and convergence of the ANFIS-SBO model were far superior to those of the ANFIS-TLBO model.Therefore,both the ensemble models proposed in this paper can generate adequate results,and the ANFIS-SBO model is recommended as the more suitable model for landslide susceptibility assessment in the study area considered due to its excellent accuracy and efficiency. 展开更多
关键词 Landslide susceptibility Step-wise weight assessment ratio analysis Adaptive neuro-fuzzy fuzzy inference system Teaching-learning-based optimization Satin bowerbird optimizer
下载PDF
Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression(SVR)with GWO,BAT and COA algorithms 被引量:6
3
作者 Abdul-Lateef Balogun Fatemeh Rezaie +6 位作者 Quoc Bao Pham Ljubomir Gigović Siniša Drobnjak Yusuf AAina mahdi panahi Shamsudeen Temitope Yekeen Saro Lee 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期384-398,共15页
In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic informatio... In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic information system database,and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth,aerial photographs,and other validated sources.A support vector regression(SVR)machine-learning model was used to divide the landslide inventory into training(70%)and testing(30%)datasets.The landslide susceptibility map was produced using 14 causative factors.We applied the established gray wolf optimization(GWO)algorithm,bat algorithm(BA),and cuckoo optimization algorithm(COA)to fine-tune the parameters of the SVR model to improve its predictive accuracy.The resultant hybrid models,SVR-GWO,SVR-BA,and SVR-COA,were validated in terms of the area under curve(AUC)and root mean square error(RMSE).The AUC values for the SVR-GWO(0.733),SVR-BA(0.724),and SVR-COA(0.738)models indicate their good prediction rates for landslide susceptibility modeling.SVR-COA had the greatest accuracy,with an RMSE of 0.21687,and SVR-BA had the least accuracy,with an RMSE of 0.23046.The three optimized hybrid models outperformed the SVR model(AUC=0.704,RMSE=0.26689),confirming the ability of metaheuristic algorithms to improve model performance. 展开更多
关键词 LANDSLIDE Machine learning METAHEURISTIC Spatial modeling Support vector regression
下载PDF
Deep learning neural networks for spatially explicit prediction of flash flood probability 被引量:4
4
作者 mahdi panahi Abolfazl Jaafari +5 位作者 Ataollah Shirzadi Himan Shahabi Omid Rahmati Ebrahim Omidvar Saro Lee Dieu Tien Bui 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期370-383,共14页
Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two archite... Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two architectures of deep learning neural networks,namely convolutional neural networks(CNN)and recurrent neural networks(RNN),for spatially explicit prediction and mapping of flash flood probability.To develop and validate the predictive models,a geospatial database that contained records for the historical flood events and geo-environmental characteristics of the Golestan Province in northern Iran was constructed.The step-wise weight assessment ratio analysis(SWARA)was employed to investigate the spatial interplay between floods and different influencing factors.The CNN and RNN models were trained using the SWARA weights and validated using the receiver operating characteristics technique.The results showed that the CNN model(AUC=0.832,RMSE=0.144)performed slightly better than the RNN model(AUC=0.814,RMSE=0.181)in predicting future floods.Further,these models demonstrated an improved prediction of floods compared to previous studies that used different models in the same study area.This study showed that the spatially explicit deep learning neural network models are successful in capturing the heterogeneity of spatial patterns of flood probability in the Golestan Province,and the resulting probability maps can be used for the development of mitigation plans in response to the future floods.The general policy implication of our study suggests that design,implementation,and verification of flood early warning systems should be directed to approximately 40%of the land area characterized by high and very susceptibility to flooding. 展开更多
关键词 Spatial modeling Machine learning Convolutional neural networks Recurrent neural networks GIS Iran
下载PDF
Spatial variability of soil water erosion:Comparing empirical and intelligent techniques
5
作者 Ali Golkarian Khabat Khosravi +1 位作者 mahdi panahi John J.Clague 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第1期1-16,共16页
Soil water erosion(SWE)is an important global hazard that affects food availability through soil degradation,a reduction in crop yield,and agricultural land abandonment.A map of soil erosion susceptibility is a first ... Soil water erosion(SWE)is an important global hazard that affects food availability through soil degradation,a reduction in crop yield,and agricultural land abandonment.A map of soil erosion susceptibility is a first and vital step in land management and soil conservation.Several machine learning(ML)algorithms optimized using the Grey Wolf Optimizer(GWO)metaheuristic algorithm can be used to accurately map SWE susceptibility.These optimized algorithms include Convolutional Neural Networks(CNN and CNN-GWO),Support Vector Machine(SVM and SVM-GWO),and Group Method of Data Handling(GMDH and GMDH-GWO).Results obtained using these algorithms can be compared with the well-known Revised Universal Soil Loss Equation(RUSLE)empirical model and Extreme Gradient Boosting(XGBoost)ML tree-based models.We apply these methods together with the frequency ratio(FR)model and the Information Gain Ratio(IGR)to determine the relationship between historical SWE data and controlling geo-environmental factors at 116 sites in the Noor-Rood watershed in northern Iran.Fourteen SWE geo-environmental factors are classified in topographical,hydro-climatic,land cover,and geological groups.We next divided the SWE sites into two datasets,one for model training(70%of the samples=81 locations)and the other for model validation(30%of the samples=35 locations).Finally the model-generated maps were evaluated using the Area under the Receiver Operating Characteristic(AU-ROC)curve.Our results show that elevation and rainfall erosivity have the greatest influence on SWE,while soil texture and hydrology are less important.The CNN-GWO model(AU-ROC=0.85)outperformed other models,specifically,and in order,SVR-GWO=GMDH-GWO(AUC=0.82),CNN=GMDH(AUC=0.81),SVR=XGBoost(AUC=0.80),and RULSE.Based on the RUSLE model,soil loss in the Noor-Rood watershed ranges from 0 to 2644 t ha^(-1)yr^(-1). 展开更多
关键词 Soil erosion Machine learning RUSLE CNN-GWO Iran
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部