Viscoelastic dampers are now among some of the preferred energy dissipation devices used for passive seismic response control.To evaluate the performance of structures installed with viscoelastic dampers,different ana...Viscoelastic dampers are now among some of the preferred energy dissipation devices used for passive seismic response control.To evaluate the performance of structures installed with viscoelastic dampers,different analytical models have been used to characterize their dynamic force deformation characteristics.The fractional derivative models have received favorable attention as they can capture the frequency dependence of the material stiffness and damping properties observed in the tests very well.However,accurate analytical procedures are needed to calculate the response of structures with such damper models.This paper presents a modal analysis approach,similar to that used for the analysis of linear systems,for solving the equations of inotion with fractional derivative terms for arbitrary forcing functions such as those caused by earthquake induced ground motions.The uncoupled modal equations still have fractional derivatives,but can be solved by numerical or analytical procedures.Both numerical and analytical procedures are formulated.These procedures are then used to calculate the dynamic response of a multi-degree of fleedom shear beam structure excited by ground motions. Numerical results demonstrating the response reducing effect of viscoelastic dampers are also presented.展开更多
基金the National Science Foundation through Grant No.CMS-9987469.
文摘Viscoelastic dampers are now among some of the preferred energy dissipation devices used for passive seismic response control.To evaluate the performance of structures installed with viscoelastic dampers,different analytical models have been used to characterize their dynamic force deformation characteristics.The fractional derivative models have received favorable attention as they can capture the frequency dependence of the material stiffness and damping properties observed in the tests very well.However,accurate analytical procedures are needed to calculate the response of structures with such damper models.This paper presents a modal analysis approach,similar to that used for the analysis of linear systems,for solving the equations of inotion with fractional derivative terms for arbitrary forcing functions such as those caused by earthquake induced ground motions.The uncoupled modal equations still have fractional derivatives,but can be solved by numerical or analytical procedures.Both numerical and analytical procedures are formulated.These procedures are then used to calculate the dynamic response of a multi-degree of fleedom shear beam structure excited by ground motions. Numerical results demonstrating the response reducing effect of viscoelastic dampers are also presented.