为研究小刺猴头菌[Hericium caput-medusae(Bull.:Fr.)Pers]发酵浸膏多糖的抗氧化活性。以工厂化小刺猴头菌发酵浸膏为原料,采用透析法分级,DEAE sepharose fast flow柱层析纯化,分别获得粗多糖组分HFCP1和中性多糖HFCP1-1;通过PMP柱前...为研究小刺猴头菌[Hericium caput-medusae(Bull.:Fr.)Pers]发酵浸膏多糖的抗氧化活性。以工厂化小刺猴头菌发酵浸膏为原料,采用透析法分级,DEAE sepharose fast flow柱层析纯化,分别获得粗多糖组分HFCP1和中性多糖HFCP1-1;通过PMP柱前衍生-高效液相色谱法和红外光谱法对单糖组成和结构进行分析,单糖组成均以葡萄糖和半乳糖为主。化学法检测多糖抗氧化活性,结果显示:HFCP1和HFCP1-1清除羟基自由基、超氧阴离子自由基、2,2′-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(2,2′-azinobis-3-ethylbenzthiazoline-6-sulphonate,ABTS+)和1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)的IC50值分别为7.66和6.77mg/mL、6.16和5.30mg/mL、0.63和0.85mg/mL、0.39和2.62mg/mL。以RAW264.7细胞建立H2O2诱导损伤模型,细胞抗氧化结果表明:HFCP1和HFCP1-1处理组与模型组相比均显著增强细胞活力(P<0.05),浓度为100和200mg/L时MDA含量与模型组相比均显著下降(P<0.05);HFCP1浓度为100和200mg/L时与模型组相比显著增加SOD和GSH-Px的活性(P<0.05);HFCP1-1浓度为200mg/L时与模型组相比显著增加SOD活性(P<0.05);也能增加GSH-Px的活性,但未达到显著水平(P>0.05)。展开更多
文摘为研究小刺猴头菌[Hericium caput-medusae(Bull.:Fr.)Pers]发酵浸膏多糖的抗氧化活性。以工厂化小刺猴头菌发酵浸膏为原料,采用透析法分级,DEAE sepharose fast flow柱层析纯化,分别获得粗多糖组分HFCP1和中性多糖HFCP1-1;通过PMP柱前衍生-高效液相色谱法和红外光谱法对单糖组成和结构进行分析,单糖组成均以葡萄糖和半乳糖为主。化学法检测多糖抗氧化活性,结果显示:HFCP1和HFCP1-1清除羟基自由基、超氧阴离子自由基、2,2′-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(2,2′-azinobis-3-ethylbenzthiazoline-6-sulphonate,ABTS+)和1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)的IC50值分别为7.66和6.77mg/mL、6.16和5.30mg/mL、0.63和0.85mg/mL、0.39和2.62mg/mL。以RAW264.7细胞建立H2O2诱导损伤模型,细胞抗氧化结果表明:HFCP1和HFCP1-1处理组与模型组相比均显著增强细胞活力(P<0.05),浓度为100和200mg/L时MDA含量与模型组相比均显著下降(P<0.05);HFCP1浓度为100和200mg/L时与模型组相比显著增加SOD和GSH-Px的活性(P<0.05);HFCP1-1浓度为200mg/L时与模型组相比显著增加SOD活性(P<0.05);也能增加GSH-Px的活性,但未达到显著水平(P>0.05)。