Researchers are paying increasing attention to the development of low-cost and microcontroller-based accelerometers,in order to make structural health monitoring feasible for conventional bridges with limited monitori...Researchers are paying increasing attention to the development of low-cost and microcontroller-based accelerometers,in order to make structural health monitoring feasible for conventional bridges with limited monitoring budget.Parallel with the low-cost sensor development,the use of the embedded accelerometers of smartphones for eigenfrequency analysis of bridges is becoming popular in the civil engineering literature.This paper,for the first time in the literature,studies these two promising technologies by comparing the noise density and eigenfrequency analysis of a self-developed,validated and calibrated low-cost Internet of things based accelerometer LARA(low cost adaptable reliable accelerometer)with those of a state of the art smartphone(iPhone XR).The eigenfrequency analysis of a footbridge in San Sebastian,Spain,showed that the embedded accelerometer of the iPhone XR can measure the natural frequencies of the under study bridge.展开更多
基金supported by the projects PID2021-126405OB-C31,funded by FEDER funds—A Way to Make Europe and Spanish Ministry of Economy and Competitiveness MICIN/AEI/10.13039/501100011033/the National Natural Science Foundation of China(Grant Nos.52278313,52411540031)the Project to Attract Foreign Experts(No.G2023133018L),the Top Discipline Plan of Shanghai Universities—Class I.
文摘Researchers are paying increasing attention to the development of low-cost and microcontroller-based accelerometers,in order to make structural health monitoring feasible for conventional bridges with limited monitoring budget.Parallel with the low-cost sensor development,the use of the embedded accelerometers of smartphones for eigenfrequency analysis of bridges is becoming popular in the civil engineering literature.This paper,for the first time in the literature,studies these two promising technologies by comparing the noise density and eigenfrequency analysis of a self-developed,validated and calibrated low-cost Internet of things based accelerometer LARA(low cost adaptable reliable accelerometer)with those of a state of the art smartphone(iPhone XR).The eigenfrequency analysis of a footbridge in San Sebastian,Spain,showed that the embedded accelerometer of the iPhone XR can measure the natural frequencies of the under study bridge.