In Jordan, Zarqa River Basin (ZRB) has been taken as a case study for applying water management models because of its limited water resources and due to the fact that the basin is dwelling with about 52% of Jordan’s ...In Jordan, Zarqa River Basin (ZRB) has been taken as a case study for applying water management models because of its limited water resources and due to the fact that the basin is dwelling with about 52% of Jordan’s population. The surface water resources are mainly used for agriculture because they are mixed with treated water and cannot be used for domestic purposes. This paper aims to demonstrate the contributions of Models in watershed management that provide indirect ways of assessing and confirming the success of models in water flow simulation. The method includes transferring the computed hydrologic parameters for Zarqa basin’s sub-catchments within Watershed Modeling System (WMS) into Water Resources Model (WRM) and HEC-1 models. Then the results of the HEC-1 and WRM models are compared according to their basin’s simulation with the real basin. The study includes description of the HEC-1, WRM models philosophy, the models representation, and simulation results and analysis of the Zarqa River Basin. Comparing the results of WRM and HEC-1 models proved their simulation efficiency in predicting the flow of Zarqa River Basin. Nevertheless, the philosophy of HEC-1 is a single storm event and is based on values of curve number, while WRM philosophy describes the water flow and availability, and demand and supply balance on a daily basis across the basin. The models’ predictions for the real flow definitely establish the modeling certainty and help the water resources’ developers to incorporate different basin features for watershed representation, simulation, and management. Hence, the certainty of the results in modeling provides indirect ways of assessing the success of models’ simulations.展开更多
文摘In Jordan, Zarqa River Basin (ZRB) has been taken as a case study for applying water management models because of its limited water resources and due to the fact that the basin is dwelling with about 52% of Jordan’s population. The surface water resources are mainly used for agriculture because they are mixed with treated water and cannot be used for domestic purposes. This paper aims to demonstrate the contributions of Models in watershed management that provide indirect ways of assessing and confirming the success of models in water flow simulation. The method includes transferring the computed hydrologic parameters for Zarqa basin’s sub-catchments within Watershed Modeling System (WMS) into Water Resources Model (WRM) and HEC-1 models. Then the results of the HEC-1 and WRM models are compared according to their basin’s simulation with the real basin. The study includes description of the HEC-1, WRM models philosophy, the models representation, and simulation results and analysis of the Zarqa River Basin. Comparing the results of WRM and HEC-1 models proved their simulation efficiency in predicting the flow of Zarqa River Basin. Nevertheless, the philosophy of HEC-1 is a single storm event and is based on values of curve number, while WRM philosophy describes the water flow and availability, and demand and supply balance on a daily basis across the basin. The models’ predictions for the real flow definitely establish the modeling certainty and help the water resources’ developers to incorporate different basin features for watershed representation, simulation, and management. Hence, the certainty of the results in modeling provides indirect ways of assessing the success of models’ simulations.