Phthalocyanines-related compounds, subphthalocyanines, are the homologues consisting of three isoindole units with boron as the center. The absorption maximum of subphthalocyanines, called the Q band, appears around 5...Phthalocyanines-related compounds, subphthalocyanines, are the homologues consisting of three isoindole units with boron as the center. The absorption maximum of subphthalocyanines, called the Q band, appears around 560 - 630 nm, which is shifted by approximately 100 nm to shorter wavelengths compared to phthalocyanines. Subphthalocyanines are used as precursors to prepare unsymmetric phthalocyanines for ring enlargement reaction. In this decade, phthalocyanines are used for dye-sensitized solar cells (DSSCs), which require strong absorption of far-red light between 700 and 850 nm because of their highly efficiency. Non-peripheral thioaryl-substituted phthalocyanines have been synthesized. They show near-infrared absorption around 780 - 870 nm and have excellent electron transfer properties. However, their lack of affinity to basal plats inhibits their use as DSSC photosensitizer. Therefore, to synthesize unsymmetrical non-peripheral thioaryl-substituted phthalocyanines possessing good affinity to basal plates, the authors prepared subphthalocyanines having thioaryl substituents as precursors. Spectroscopic properties and electron transfer abilities to synthesize non-peripheral thioaryl-substituted subphthalocyanines were estimated using cyclic voltammetry. The Q band of non-peripheral thioaryl-substituted subphthalocyanines shows around 650 nm shifted to longer wavelength by 86 nm in comparison to subphthalocyanine. The compounds show many reduction potentials. They are acceptable electrons in the subphthalocyanine ring, meaning that the compounds have good electron transfer properties.展开更多
We develop magnetic metallic contaminant detectors using high-temperature superconducting quantum interference devices (HTS-SQUIDs) for industrial products. Finding ultra-small metallic contaminants is an important ...We develop magnetic metallic contaminant detectors using high-temperature superconducting quantum interference devices (HTS-SQUIDs) for industrial products. Finding ultra-small metallic contaminants is an important issue for manufacturers producing commercial products such as lithium ion batteries. If such contaminants cause damages, the manufacturer of the product suffers a big financial loss due to having to recall the faulty products. Previously, we described a system for finding such ultra-smafi particles in food. In this study, we describe further developments of the system, for the reduction of the effect of the remnant field of the products, and we test the parallel magnetization of the products to generate the remnant field only at both ends of the products. In addition, we use an SQUID gradiometer in place of the magnetometer to reduce the edge effect by measuring the magnetic field gradient. We test the performances of the system and find that tiny iron particles as small as 50 × 50 μm^2 on the electrode of a lithium ion battery could be clearly detected. This detection level is difficult to achieve when using other methods.展开更多
文摘Phthalocyanines-related compounds, subphthalocyanines, are the homologues consisting of three isoindole units with boron as the center. The absorption maximum of subphthalocyanines, called the Q band, appears around 560 - 630 nm, which is shifted by approximately 100 nm to shorter wavelengths compared to phthalocyanines. Subphthalocyanines are used as precursors to prepare unsymmetric phthalocyanines for ring enlargement reaction. In this decade, phthalocyanines are used for dye-sensitized solar cells (DSSCs), which require strong absorption of far-red light between 700 and 850 nm because of their highly efficiency. Non-peripheral thioaryl-substituted phthalocyanines have been synthesized. They show near-infrared absorption around 780 - 870 nm and have excellent electron transfer properties. However, their lack of affinity to basal plats inhibits their use as DSSC photosensitizer. Therefore, to synthesize unsymmetrical non-peripheral thioaryl-substituted phthalocyanines possessing good affinity to basal plates, the authors prepared subphthalocyanines having thioaryl substituents as precursors. Spectroscopic properties and electron transfer abilities to synthesize non-peripheral thioaryl-substituted subphthalocyanines were estimated using cyclic voltammetry. The Q band of non-peripheral thioaryl-substituted subphthalocyanines shows around 650 nm shifted to longer wavelength by 86 nm in comparison to subphthalocyanine. The compounds show many reduction potentials. They are acceptable electrons in the subphthalocyanine ring, meaning that the compounds have good electron transfer properties.
文摘We develop magnetic metallic contaminant detectors using high-temperature superconducting quantum interference devices (HTS-SQUIDs) for industrial products. Finding ultra-small metallic contaminants is an important issue for manufacturers producing commercial products such as lithium ion batteries. If such contaminants cause damages, the manufacturer of the product suffers a big financial loss due to having to recall the faulty products. Previously, we described a system for finding such ultra-smafi particles in food. In this study, we describe further developments of the system, for the reduction of the effect of the remnant field of the products, and we test the parallel magnetization of the products to generate the remnant field only at both ends of the products. In addition, we use an SQUID gradiometer in place of the magnetometer to reduce the edge effect by measuring the magnetic field gradient. We test the performances of the system and find that tiny iron particles as small as 50 × 50 μm^2 on the electrode of a lithium ion battery could be clearly detected. This detection level is difficult to achieve when using other methods.