Thermoelectric materials have been a competent source for the production of energy in the present decade.The most important and potential parameter required for the material to have better thermoelectric characteristi...Thermoelectric materials have been a competent source for the production of energy in the present decade.The most important and potential parameter required for the material to have better thermoelectric characteristics is the Seebeck coefficient.In this work,ultra high molecular weight polyethylene(UHMWPE)and graphene oxide(GO)nanocomposites were prepared by mechanical mixing by containing 10000ppm,50000ppm,70000ppm,100000ppm,150000ppm,and 200000ppm loadings of graphene oxide.Due to the intrinsic insulating nature of UHMWPE,the value of Seebeck for pristine UHMWPE and its nanocomposites with 10000ppm&50000ppm of GO concentration was too low to be detected.However,the Seebeck coefficient for composites with 70000ppm,100000ppm,150000ppm,and 200000ppm loadings of GO was found to be 180,206,230,and 235μV/K,respectively.These higher values of Seebeck coefficients were attributed to the superior thermal insulating nature of UHMWPE and the conductive network induced by the GO within the UHMWPE insulating matrix.Although,the values of the figure of merit and power factor were negligibly small due to the lower concentration of charge carriers in UHMWPE/GO nanocomposites but still reported,results are extremely hopeful for considering the composite as the potential candidate for thermoelectric applications.展开更多
Total Knee Replacement(TKR)is the increasing trend now a day,in revision surgery which is associated with aseptic loosening,which is a challenging research for the TKR component.The selection of optimal material loose...Total Knee Replacement(TKR)is the increasing trend now a day,in revision surgery which is associated with aseptic loosening,which is a challenging research for the TKR component.The selection of optimal material loosening can be controlled at some limits.This paper is going to consider the best material selected among a number of alternative materials for the femoral component(FC)by using Graph Theory.Here GTMA process used for optimization of material and a systematic technique introduced through sensitivity analysis to find out the more reliable result.Obtained ranking suggests the use of optimized material over the other existing material.By following GTMA Co_Cr-alloys(wrought-Co-Ni-Cr-Mo)and Co_Cr-alloys(cast-able-Co-Cr-Mo)are on the 1st and 2nd position respectively.展开更多
文摘Thermoelectric materials have been a competent source for the production of energy in the present decade.The most important and potential parameter required for the material to have better thermoelectric characteristics is the Seebeck coefficient.In this work,ultra high molecular weight polyethylene(UHMWPE)and graphene oxide(GO)nanocomposites were prepared by mechanical mixing by containing 10000ppm,50000ppm,70000ppm,100000ppm,150000ppm,and 200000ppm loadings of graphene oxide.Due to the intrinsic insulating nature of UHMWPE,the value of Seebeck for pristine UHMWPE and its nanocomposites with 10000ppm&50000ppm of GO concentration was too low to be detected.However,the Seebeck coefficient for composites with 70000ppm,100000ppm,150000ppm,and 200000ppm loadings of GO was found to be 180,206,230,and 235μV/K,respectively.These higher values of Seebeck coefficients were attributed to the superior thermal insulating nature of UHMWPE and the conductive network induced by the GO within the UHMWPE insulating matrix.Although,the values of the figure of merit and power factor were negligibly small due to the lower concentration of charge carriers in UHMWPE/GO nanocomposites but still reported,results are extremely hopeful for considering the composite as the potential candidate for thermoelectric applications.
文摘Total Knee Replacement(TKR)is the increasing trend now a day,in revision surgery which is associated with aseptic loosening,which is a challenging research for the TKR component.The selection of optimal material loosening can be controlled at some limits.This paper is going to consider the best material selected among a number of alternative materials for the femoral component(FC)by using Graph Theory.Here GTMA process used for optimization of material and a systematic technique introduced through sensitivity analysis to find out the more reliable result.Obtained ranking suggests the use of optimized material over the other existing material.By following GTMA Co_Cr-alloys(wrought-Co-Ni-Cr-Mo)and Co_Cr-alloys(cast-able-Co-Cr-Mo)are on the 1st and 2nd position respectively.