The main objective of this study is to evaluate the seasonal performance of 20 MW solar power plants in Senegal. The analysis revealed notable seasonal variations in the performance of all stations. The most significa...The main objective of this study is to evaluate the seasonal performance of 20 MW solar power plants in Senegal. The analysis revealed notable seasonal variations in the performance of all stations. The most significant yields are recorded in spring, autumn and winter, with values ranging from 5 to 7.51 kWh/kWp/day for the reference yield and 4.02 to 7.58 kWh/kWp/day for the final yield. These fluctuations are associated with intense solar activity during the dry season and clear skies, indicating peak production. Conversely, minimum values are recorded during the rainy season from June to September, with a final yield of 3.86 kWh/kW/day due to dust, clouds and high temperatures. The performance ratio analysis shows seasonal dynamics throughout the year with rates ranging from 77.40% to 95.79%, reinforcing reliability and optimal utilization of installed capacity. The results of the capacity factor vary significantly, with March, April, May, and sometimes October standing out as periods of optimal performance, with 16% for Kahone, 16% for Bokhol, 18% for Malicounda and 23% for Sakal. Total losses from solar power plants show similar seasonal trends standing out for high loss levels from June to July, reaching up to 3.35 kWh/kWp/day in June. However, using solar trackers at Sakal has increased production by up to 25%, demonstrating the operational stability of this innovative technology compared with the plants fixed panel. Finally, comparing these results with international studies confirms the outstanding efficiency of Senegalese solar power plants, other installations around the world.展开更多
<span style="font-family:Verdana;">This study aims to evaluate the optical losses of photovoltaic modules due to Saharan dust deposition in Dakar, Senegal, West Africa. For this purpose, an air-dust-gl...<span style="font-family:Verdana;">This study aims to evaluate the optical losses of photovoltaic modules due to Saharan dust deposition in Dakar, Senegal, West Africa. For this purpose, an air-dust-glass system is modeled to simulate optical losses in transmittance </span><span style="font-family:Verdana;">and reflectance. To do this, we have collected dust samples from Photo-Voltaic</span><span style="font-family:Verdana;"> (PV) surface in Dakar area (14<span style="white-space:nowrap;">°</span>42'N latitude, 17<span style="white-space:nowrap;">°</span>28'W longitude), Senegal. X-ray fluorescence reveals that silicon (Si), iron (Fe), calcium (Ca) and potassium (K) mainly </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">compose</span></span></span></span></span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">d these dust samples. Then, dust refractive indices obtained from an ellipsometer were used as an input to be used in the model. Simulations show that for radiation (at normal incidence) arriving on a dust layer of 30 μm-thick (corresponding to a dust deposit of 1.63 g/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">), 79% of the visible spectrum is transmitted</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> 19% is reflected and 2% is absorbed. Overall, the transmittance decreases by more than 50% as of dust layer of 70 μm-thick corresponding to a dust deposit of 3.3 g/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">.</span></span></span></span></span>展开更多
This paper presents a study using in situ measurements (AERONET data) to characterize the intra-seasonal variability of aerosols and their shortwave radiative impacts on Sahel (11N - 18N and 20W - 15E) climate using a...This paper presents a study using in situ measurements (AERONET data) to characterize the intra-seasonal variability of aerosols and their shortwave radiative impacts on Sahel (11N - 18N and 20W - 15E) climate using a long time series (2000 to 2010) from AERONET data. We first used the MISR aerosol optical depth (AOD) averaged between 2000 and 2010 to identify dust maxima regions. They are mainly located over Eastern Mauritania-Northern Mali and Eastern Niger-Western Tchad (near the Bodele depression). Moreover the aerosol loading is stronger during the spring (MAM) and particularly during the summer (JJA). The analysis of AERONET data at 4 Sahelian stations (Dakar, Agoufou, Banizoumbou and Ouagadougou) shows that Sahel is under dust influence all year long. The dust season is mainly located between March and October, with two peaks of AOD recorded in March and June;while the maximum of biomass burning activity is recorded in winter (December to February). The radiative forcing of aerosols on the Sahelian climate results mainly in a cooling as well as at the surface than at the top of the atmosphere (TOA) but the forcing is stronger at the surface and particularly during the summer (JJA) and spring (MAM) periods. Although there is not a sharp difference between DJF and SON periods from a station to another one when considering the aerosol loading (AOD), the radiative forcing is stronger at the surface and weaker at the TOA during DJF for most stations. The analysis of the force effectiveness (ratio between AOD and the radiative forcing) suggests that the BOA radiative forcing is mainly influenced by the nature of aerosols.展开更多
This study aims to evaluate dust impact on climate parameters over the Sahel region by RegCM3 regional model during 2006. Indeed, aerosols are one of the main uncertainties in climate models. The aerosol optical depth...This study aims to evaluate dust impact on climate parameters over the Sahel region by RegCM3 regional model during 2006. Indeed, aerosols are one of the main uncertainties in climate models. The aerosol optical depth (AOD) derived from RegCM3 model has been validated with various observed datasets. The aerosol sources are identified over North Algeria and East of Sahel (Bodele depression). Discrepancies are noted when considering dust temporal and spatial distribution. Dust season extends between March and October, with two peaks of AOD recorded in March (spring) and June (summer). The dust vertical distribution showed that the mineral aerosol layer is located between 850 hPa and 300 hPa (1.5 km to 7 km). The RegCM3 model simulates fairly well the transport in the upper layers, especially in the Saharan Air Layer (SAL) during the summer. However, RegCM3 simulates poorly the transport and sedimentation of particles in the lower layers (below 2 km). The investigation of dust radiative impact shows a general cooling. The maximum of radiative forcing is located around 18°N - 20°N, with values of about -80 W/m2 in June - August (JJA) and -40 W/m2 at the surface during March - May (MAM). This study also showed the indirect effect of dust with a decrease in precipitation about -0.7 mm/day around 15 - 20°N during the rainy season.展开更多
文摘The main objective of this study is to evaluate the seasonal performance of 20 MW solar power plants in Senegal. The analysis revealed notable seasonal variations in the performance of all stations. The most significant yields are recorded in spring, autumn and winter, with values ranging from 5 to 7.51 kWh/kWp/day for the reference yield and 4.02 to 7.58 kWh/kWp/day for the final yield. These fluctuations are associated with intense solar activity during the dry season and clear skies, indicating peak production. Conversely, minimum values are recorded during the rainy season from June to September, with a final yield of 3.86 kWh/kW/day due to dust, clouds and high temperatures. The performance ratio analysis shows seasonal dynamics throughout the year with rates ranging from 77.40% to 95.79%, reinforcing reliability and optimal utilization of installed capacity. The results of the capacity factor vary significantly, with March, April, May, and sometimes October standing out as periods of optimal performance, with 16% for Kahone, 16% for Bokhol, 18% for Malicounda and 23% for Sakal. Total losses from solar power plants show similar seasonal trends standing out for high loss levels from June to July, reaching up to 3.35 kWh/kWp/day in June. However, using solar trackers at Sakal has increased production by up to 25%, demonstrating the operational stability of this innovative technology compared with the plants fixed panel. Finally, comparing these results with international studies confirms the outstanding efficiency of Senegalese solar power plants, other installations around the world.
文摘<span style="font-family:Verdana;">This study aims to evaluate the optical losses of photovoltaic modules due to Saharan dust deposition in Dakar, Senegal, West Africa. For this purpose, an air-dust-glass system is modeled to simulate optical losses in transmittance </span><span style="font-family:Verdana;">and reflectance. To do this, we have collected dust samples from Photo-Voltaic</span><span style="font-family:Verdana;"> (PV) surface in Dakar area (14<span style="white-space:nowrap;">°</span>42'N latitude, 17<span style="white-space:nowrap;">°</span>28'W longitude), Senegal. X-ray fluorescence reveals that silicon (Si), iron (Fe), calcium (Ca) and potassium (K) mainly </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">compose</span></span></span></span></span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">d these dust samples. Then, dust refractive indices obtained from an ellipsometer were used as an input to be used in the model. Simulations show that for radiation (at normal incidence) arriving on a dust layer of 30 μm-thick (corresponding to a dust deposit of 1.63 g/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">), 79% of the visible spectrum is transmitted</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> 19% is reflected and 2% is absorbed. Overall, the transmittance decreases by more than 50% as of dust layer of 70 μm-thick corresponding to a dust deposit of 3.3 g/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">.</span></span></span></span></span>
文摘This paper presents a study using in situ measurements (AERONET data) to characterize the intra-seasonal variability of aerosols and their shortwave radiative impacts on Sahel (11N - 18N and 20W - 15E) climate using a long time series (2000 to 2010) from AERONET data. We first used the MISR aerosol optical depth (AOD) averaged between 2000 and 2010 to identify dust maxima regions. They are mainly located over Eastern Mauritania-Northern Mali and Eastern Niger-Western Tchad (near the Bodele depression). Moreover the aerosol loading is stronger during the spring (MAM) and particularly during the summer (JJA). The analysis of AERONET data at 4 Sahelian stations (Dakar, Agoufou, Banizoumbou and Ouagadougou) shows that Sahel is under dust influence all year long. The dust season is mainly located between March and October, with two peaks of AOD recorded in March and June;while the maximum of biomass burning activity is recorded in winter (December to February). The radiative forcing of aerosols on the Sahelian climate results mainly in a cooling as well as at the surface than at the top of the atmosphere (TOA) but the forcing is stronger at the surface and particularly during the summer (JJA) and spring (MAM) periods. Although there is not a sharp difference between DJF and SON periods from a station to another one when considering the aerosol loading (AOD), the radiative forcing is stronger at the surface and weaker at the TOA during DJF for most stations. The analysis of the force effectiveness (ratio between AOD and the radiative forcing) suggests that the BOA radiative forcing is mainly influenced by the nature of aerosols.
文摘This study aims to evaluate dust impact on climate parameters over the Sahel region by RegCM3 regional model during 2006. Indeed, aerosols are one of the main uncertainties in climate models. The aerosol optical depth (AOD) derived from RegCM3 model has been validated with various observed datasets. The aerosol sources are identified over North Algeria and East of Sahel (Bodele depression). Discrepancies are noted when considering dust temporal and spatial distribution. Dust season extends between March and October, with two peaks of AOD recorded in March (spring) and June (summer). The dust vertical distribution showed that the mineral aerosol layer is located between 850 hPa and 300 hPa (1.5 km to 7 km). The RegCM3 model simulates fairly well the transport in the upper layers, especially in the Saharan Air Layer (SAL) during the summer. However, RegCM3 simulates poorly the transport and sedimentation of particles in the lower layers (below 2 km). The investigation of dust radiative impact shows a general cooling. The maximum of radiative forcing is located around 18°N - 20°N, with values of about -80 W/m2 in June - August (JJA) and -40 W/m2 at the surface during March - May (MAM). This study also showed the indirect effect of dust with a decrease in precipitation about -0.7 mm/day around 15 - 20°N during the rainy season.