We present a well behaved class of charge analogue of Alder’s (1974). This solution describes charge fluid balls with positively finite central pressure and positively finite central density;their ratio is less than ...We present a well behaved class of charge analogue of Alder’s (1974). This solution describes charge fluid balls with positively finite central pressure and positively finite central density;their ratio is less than one and causality condition is obeyed at the centre. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. The solution gives us wide range of parameter K (0.96 ≤ K ≤ 5.2) for which the solution is well behaved and appropriate for relativistic theory;therefore, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degrees of suitability and by assuming the surface density ρb = 2 × 1014 g/cm3. Corresponding to K = 0.96 and X = 0.35, the maximum mass of the star comes out to be 3.43 MΘ with linear dimension 32.66 Km and central redshift and surface redshift 1.09374 and 0.5509 respectively.展开更多
文摘We present a well behaved class of charge analogue of Alder’s (1974). This solution describes charge fluid balls with positively finite central pressure and positively finite central density;their ratio is less than one and causality condition is obeyed at the centre. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. The solution gives us wide range of parameter K (0.96 ≤ K ≤ 5.2) for which the solution is well behaved and appropriate for relativistic theory;therefore, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degrees of suitability and by assuming the surface density ρb = 2 × 1014 g/cm3. Corresponding to K = 0.96 and X = 0.35, the maximum mass of the star comes out to be 3.43 MΘ with linear dimension 32.66 Km and central redshift and surface redshift 1.09374 and 0.5509 respectively.