Sulpho-aluminate expansive cementitious composite is proved to be one of the most effective ways to prevent concrete cracking too soon. Mix design of sulpho-aluminate expansive cementitious composite completely depend...Sulpho-aluminate expansive cementitious composite is proved to be one of the most effective ways to prevent concrete cracking too soon. Mix design of sulpho-aluminate expansive cementitious composite completely depends on experience and experiments at present. This method ignores the influence of expansion behavior which hinders the application of sulpho-aluminate expansive cementitious composite. The workability,free expansion property,flexural strength and compressive strength of sulpho-aluminate expansive cementitious composite have been investigated by tests. The relationship between expansion ratio and mix design parameters such as curing age,water-cement ratio and cement abundance coefficient is deduced according to the experimental statistics. A new simplified approach to mix design of sulpho-aluminate expansive cementitious composite is proposed as a reference for construction application,which avoids experiments and experience.展开更多
Over the past two decades, numerous non-coding RNAs(ncRNAs) have been identified in different biological systems including virology, especially in large DNA viruses such as herpesviruses. As a representative oncogenic...Over the past two decades, numerous non-coding RNAs(ncRNAs) have been identified in different biological systems including virology, especially in large DNA viruses such as herpesviruses. As a representative oncogenic alphaherpesvirus, Marek’s disease virus(MDV) causes an important immunosuppressive and rapid-onset neoplastic disease of poultry, namely Marek’s disease(MD). Vaccinations can efficiently prevent the onset of MD lymphomas and other clinical disease, often heralded as the first successful example of vaccination-based control of cancer. MDV infection is also an excellent model for research into virally-induced tumorigenesis. Recently, great progress has been made in understanding the functions of ncRNAs in MD biology.Herein, we give a review of the discovery and identification of MDV-encoded viral miRNAs, focusing on the genomics,expression profiles, and emerging critical roles of MDV-1 miRNAs as oncogenic miRNAs(oncomiRs) or tumor suppressor genes involved in the induction of MD lymphomas. We also described the involvements of host cellular miRNAs, lincRNAs, and circRNAs participating in MDV life cycle, pathogenesis, and/or tumorigenesis. The prospects, strategies, and new techniques such as the CRISPR/Cas9-based gene editing applicable for further investigation into the ncRNA-mediated regulatory mechanisms in MDV pathogenesis/oncogenesis were also discussed, together with the possibilities of future studies on antiviral therapy and the development of new efficient MD vaccines.展开更多
基金Supported by Projects of NSFC(No.51108207)Science and Technology Development Planning of Jilin Province(No.201201057)
文摘Sulpho-aluminate expansive cementitious composite is proved to be one of the most effective ways to prevent concrete cracking too soon. Mix design of sulpho-aluminate expansive cementitious composite completely depends on experience and experiments at present. This method ignores the influence of expansion behavior which hinders the application of sulpho-aluminate expansive cementitious composite. The workability,free expansion property,flexural strength and compressive strength of sulpho-aluminate expansive cementitious composite have been investigated by tests. The relationship between expansion ratio and mix design parameters such as curing age,water-cement ratio and cement abundance coefficient is deduced according to the experimental statistics. A new simplified approach to mix design of sulpho-aluminate expansive cementitious composite is proposed as a reference for construction application,which avoids experiments and experience.
基金supported by the National Natural Science Foundation of China(U21A20260)the Natural Science Foundation of Henan Province(212300410359)+1 种基金the Independent innovation project of Henan Academy of Agricultural Sciences(2022ZC65)the BBSRC Newton Fund Joint Centre Awards on“UK-China Centre of Excellence for Research on Avian Diseases”(BBS/OS/NW/000007)。
文摘Over the past two decades, numerous non-coding RNAs(ncRNAs) have been identified in different biological systems including virology, especially in large DNA viruses such as herpesviruses. As a representative oncogenic alphaherpesvirus, Marek’s disease virus(MDV) causes an important immunosuppressive and rapid-onset neoplastic disease of poultry, namely Marek’s disease(MD). Vaccinations can efficiently prevent the onset of MD lymphomas and other clinical disease, often heralded as the first successful example of vaccination-based control of cancer. MDV infection is also an excellent model for research into virally-induced tumorigenesis. Recently, great progress has been made in understanding the functions of ncRNAs in MD biology.Herein, we give a review of the discovery and identification of MDV-encoded viral miRNAs, focusing on the genomics,expression profiles, and emerging critical roles of MDV-1 miRNAs as oncogenic miRNAs(oncomiRs) or tumor suppressor genes involved in the induction of MD lymphomas. We also described the involvements of host cellular miRNAs, lincRNAs, and circRNAs participating in MDV life cycle, pathogenesis, and/or tumorigenesis. The prospects, strategies, and new techniques such as the CRISPR/Cas9-based gene editing applicable for further investigation into the ncRNA-mediated regulatory mechanisms in MDV pathogenesis/oncogenesis were also discussed, together with the possibilities of future studies on antiviral therapy and the development of new efficient MD vaccines.