Global industrialization could be considered as a major cause of environmental contamination with heavy metals. Barley and malt, vastly used in the food industries, are of no exception. Therefore, we aimed to measure ...Global industrialization could be considered as a major cause of environmental contamination with heavy metals. Barley and malt, vastly used in the food industries, are of no exception. Therefore, we aimed to measure the levels of trace elements Zinc, Copper and heavy metals Lead and Cadmium by Differential Pulse Anodic Stripping Voltammetry in 19 barley grain cultivars and their malts in Iran. Ferric reducing antioxidant power (FRAP) assay was also used for determination of antioxidant activity of the samples. The mean levels of Zn, Cd, Pb and Cu were measured to be 18.813 ± 8.575, 0.212 ± 0.116, 0.278 ± 0.163, 3.746 ± 1.118 mg/100g in the barley samples and 14.364 ± 6.391, 0.153 ± 0.098, 0.179 ± 0.082 and 3.033 ± 1.392 mg/100g in the malt samples, respectively. The highest concentration of Zn was measured in the Bahman cultivar of barley and Mb-82-4 sample of malt while the Sahra cultivar of barley and Valfajr sample of malt had the lowest concentration of Pb and the Nimrooz cultivar of barley and Rihane-03 sample of malt had the lowest concentration Cu. The mean levels of zinc and lead in the evaluated samples of barley and the mean levels of zinc, lead and cadmium in the samples of malt were significantly lower than standard limits. Although not significant, the mean levels of cadmium in barley samples and copper in malt samples were higher than the standard limits, but the mean level of copper was found to be significantly higher than the standard limits in the samples of barley (p = 0.008). Antioxidant acitivity was found to be highest in the Mb-82-12 sample of malt and Nik cultivar of barley. The average antioxidant activity was found to be significantly higher in the malt compared to barley grain;1.584 ± 0.596 mg/kg vs. 0.633 ± 0.221 mg/kg (p < 0.001). The mean level of copper in barley samples was significantly higher than the standard limit that needs further investigations to be controlled.展开更多
文摘Global industrialization could be considered as a major cause of environmental contamination with heavy metals. Barley and malt, vastly used in the food industries, are of no exception. Therefore, we aimed to measure the levels of trace elements Zinc, Copper and heavy metals Lead and Cadmium by Differential Pulse Anodic Stripping Voltammetry in 19 barley grain cultivars and their malts in Iran. Ferric reducing antioxidant power (FRAP) assay was also used for determination of antioxidant activity of the samples. The mean levels of Zn, Cd, Pb and Cu were measured to be 18.813 ± 8.575, 0.212 ± 0.116, 0.278 ± 0.163, 3.746 ± 1.118 mg/100g in the barley samples and 14.364 ± 6.391, 0.153 ± 0.098, 0.179 ± 0.082 and 3.033 ± 1.392 mg/100g in the malt samples, respectively. The highest concentration of Zn was measured in the Bahman cultivar of barley and Mb-82-4 sample of malt while the Sahra cultivar of barley and Valfajr sample of malt had the lowest concentration of Pb and the Nimrooz cultivar of barley and Rihane-03 sample of malt had the lowest concentration Cu. The mean levels of zinc and lead in the evaluated samples of barley and the mean levels of zinc, lead and cadmium in the samples of malt were significantly lower than standard limits. Although not significant, the mean levels of cadmium in barley samples and copper in malt samples were higher than the standard limits, but the mean level of copper was found to be significantly higher than the standard limits in the samples of barley (p = 0.008). Antioxidant acitivity was found to be highest in the Mb-82-12 sample of malt and Nik cultivar of barley. The average antioxidant activity was found to be significantly higher in the malt compared to barley grain;1.584 ± 0.596 mg/kg vs. 0.633 ± 0.221 mg/kg (p < 0.001). The mean level of copper in barley samples was significantly higher than the standard limit that needs further investigations to be controlled.