In this article, we propose novel reformulations for capacitated lot sizing problem. These reformulations are the result of reducing the number of variables (by eliminating the backorder variable) or increasing the nu...In this article, we propose novel reformulations for capacitated lot sizing problem. These reformulations are the result of reducing the number of variables (by eliminating the backorder variable) or increasing the number of constraints (time capacity constraints) in the standard problem formulation. These reformulations are expected to reduce the computational time complexity of the problem. Their computational efficiency is evaluated later in this article through numerical analysis on randomly generated problems.展开更多
文摘In this article, we propose novel reformulations for capacitated lot sizing problem. These reformulations are the result of reducing the number of variables (by eliminating the backorder variable) or increasing the number of constraints (time capacity constraints) in the standard problem formulation. These reformulations are expected to reduce the computational time complexity of the problem. Their computational efficiency is evaluated later in this article through numerical analysis on randomly generated problems.