期刊文献+
共找到88篇文章
< 1 2 5 >
每页显示 20 50 100
Automated Video-Based Face Detection Using Harris Hawks Optimization with Deep Learning 被引量:1
1
作者 Latifah Almuqren manar ahmed hamza +1 位作者 Abdullah Mohamed Amgad Atta Abdelmageed 《Computers, Materials & Continua》 SCIE EI 2023年第6期4917-4933,共17页
Face recognition technology automatically identifies an individual from image or video sources.The detection process can be done by attaining facial characteristics from the image of a subject face.Recent developments... Face recognition technology automatically identifies an individual from image or video sources.The detection process can be done by attaining facial characteristics from the image of a subject face.Recent developments in deep learning(DL)and computer vision(CV)techniques enable the design of automated face recognition and tracking methods.This study presents a novel Harris Hawks Optimization with deep learning-empowered automated face detection and tracking(HHODL-AFDT)method.The proposed HHODL-AFDT model involves a Faster region based convolution neural network(RCNN)-based face detection model and HHO-based hyperparameter opti-mization process.The presented optimal Faster RCNN model precisely rec-ognizes the face and is passed into the face-tracking model using a regression network(REGN).The face tracking using the REGN model uses the fea-tures from neighboring frames and foresees the location of the target face in succeeding frames.The application of the HHO algorithm for optimal hyperparameter selection shows the novelty of the work.The experimental validation of the presented HHODL-AFDT algorithm is conducted using two datasets and the experiment outcomes highlighted the superior performance of the HHODL-AFDT model over current methodologies with maximum accuracy of 90.60%and 88.08%under PICS and VTB datasets,respectively. 展开更多
关键词 Face detection face tracking deep learning computer vision video surveillance parameter tuning
下载PDF
Deep Transfer Learning-Enabled Activity Identification and Fall Detection for Disabled People 被引量:1
2
作者 Majdy M.Eltahir Adil Yousif +6 位作者 Fadwa Alrowais Mohamed K.Nour Radwa Marzouk Hatim Dafaalla Asma Abbas Hassan Elnour Amira Sayed A.Aziz manar ahmed hamza 《Computers, Materials & Continua》 SCIE EI 2023年第5期3239-3255,共17页
The human motion data collected using wearables like smartwatches can be used for activity recognition and emergency event detection.This is especially applicable in the case of elderly or disabled people who live sel... The human motion data collected using wearables like smartwatches can be used for activity recognition and emergency event detection.This is especially applicable in the case of elderly or disabled people who live self-reliantly in their homes.These sensors produce a huge volume of physical activity data that necessitates real-time recognition,especially during emergencies.Falling is one of the most important problems confronted by older people and people with movement disabilities.Numerous previous techniques were introduced and a few used webcam to monitor the activity of elderly or disabled people.But,the costs incurred upon installation and operation are high,whereas the technology is relevant only for indoor environments.Currently,commercial wearables use a wireless emergency transmitter that produces a number of false alarms and restricts a user’s movements.Against this background,the current study develops an Improved WhaleOptimizationwithDeep Learning-Enabled Fall Detection for Disabled People(IWODL-FDDP)model.The presented IWODL-FDDP model aims to identify the fall events to assist disabled people.The presented IWODLFDDP model applies an image filtering approach to pre-process the image.Besides,the EfficientNet-B0 model is utilized to generate valuable feature vector sets.Next,the Bidirectional Long Short Term Memory(BiLSTM)model is used for the recognition and classification of fall events.Finally,the IWO method is leveraged to fine-tune the hyperparameters related to the BiLSTM method,which shows the novelty of the work.The experimental analysis outcomes established the superior performance of the proposed IWODL-FDDP method with a maximum accuracy of 97.02%. 展开更多
关键词 Fall detection disabled people deep learning improved whale optimization assisted living
下载PDF
Artificial Fish Swarm Optimization with Deep Learning Enabled Opinion Mining Approach 被引量:1
3
作者 Saud S.Alotaibi Eatedal Alabdulkreem +5 位作者 Sami Althahabi manar ahmed hamza Mohammed Rizwanullah Abu Sarwar Zamani Abdelwahed Motwakel Radwa Marzouk 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期737-751,共15页
Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the patte... Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult.Since OM find useful in business sectors to improve the quality of the product as well as services,machine learning(ML)and deep learning(DL)models can be considered into account.Besides,the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process.Therefore,in this paper,a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory(AFSO-BLSTM)model has been developed for OM process.The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data.In addition,the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process.Besides,BLSTM model is employed for the effectual detection and classification of opinions.Finally,the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model,shows the novelty of the work.A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions. 展开更多
关键词 Sentiment analysis opinion mining natural language processing artificial fish swarm algorithm deep learning
下载PDF
Automated Machine Learning Enabled Cybersecurity Threat Detection in Internet of Things Environment 被引量:1
4
作者 Fadwa Alrowais Sami Althahabi +3 位作者 Saud S.Alotaibi Abdullah Mohamed manar ahmed hamza Radwa Marzouk 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期687-700,共14页
Recently,Internet of Things(IoT)devices produces massive quantity of data from distinct sources that get transmitted over public networks.Cybersecurity becomes a challenging issue in the IoT environment where the exis... Recently,Internet of Things(IoT)devices produces massive quantity of data from distinct sources that get transmitted over public networks.Cybersecurity becomes a challenging issue in the IoT environment where the existence of cyber threats needs to be resolved.The development of automated tools for cyber threat detection and classification using machine learning(ML)and artificial intelligence(AI)tools become essential to accomplish security in the IoT environment.It is needed to minimize security issues related to IoT gadgets effectively.Therefore,this article introduces a new Mayfly optimization(MFO)with regularized extreme learning machine(RELM)model,named MFO-RELM for Cybersecurity Threat Detection and classification in IoT environment.The presented MFORELM technique accomplishes the effectual identification of cybersecurity threats that exist in the IoT environment.For accomplishing this,the MFO-RELM model pre-processes the actual IoT data into a meaningful format.In addition,the RELM model receives the pre-processed data and carries out the classification process.In order to boost the performance of the RELM model,the MFO algorithm has been employed to it.The performance validation of the MFO-RELM model is tested using standard datasets and the results highlighted the better outcomes of the MFO-RELM model under distinct aspects. 展开更多
关键词 Cybersecurity threats classification internet of things machine learning parameter optimization
下载PDF
Deep Transfer Learning Driven Automated Fall Detection for Quality of Living of Disabled Persons
5
作者 Nabil Almalki Mrim M.Alnfiai +3 位作者 Fahd N.Al-Wesabi Mesfer Alduhayyem Anwer Mustafa Hilal manar ahmed hamza 《Computers, Materials & Continua》 SCIE EI 2023年第3期6719-6736,共18页
Mobile communication and the Internet of Things(IoT)technologies have recently been established to collect data from human beings and the environment.The data collected can be leveraged to provide intelligent services... Mobile communication and the Internet of Things(IoT)technologies have recently been established to collect data from human beings and the environment.The data collected can be leveraged to provide intelligent services through different applications.It is an extreme challenge to monitor disabled people from remote locations.It is because day-to-day events like falls heavily result in accidents.For a person with disabilities,a fall event is an important cause of mortality and post-traumatic complications.Therefore,detecting the fall events of disabled persons in smart homes at early stages is essential to provide the necessary support and increase their survival rate.The current study introduces a Whale Optimization Algorithm Deep Transfer Learning-DrivenAutomated Fall Detection(WOADTL-AFD)technique to improve the Quality of Life for persons with disabilities.The primary aim of the presented WOADTL-AFD technique is to identify and classify the fall events to help disabled individuals.To attain this,the proposed WOADTL-AFDmodel initially uses amodified SqueezeNet feature extractor which proficiently extracts the feature vectors.In addition,the WOADTLAFD technique classifies the fall events using an extreme Gradient Boosting(XGBoost)classifier.In the presented WOADTL-AFD technique,the WOA approach is used to fine-tune the hyperparameters involved in the modified SqueezeNet model.The proposedWOADTL-AFD technique was experimentally validated using the benchmark datasets,and the results confirmed the superior performance of the proposedWOADTL-AFD method compared to other recent approaches. 展开更多
关键词 Quality of living disabled persons intelligent models deep learning fall detection whale optimization algorithm
下载PDF
Data Mining with Comprehensive Oppositional Based Learning for Rainfall Prediction
6
作者 Mohammad Alamgeer Amal Al-Rasheed +3 位作者 Ahmad Alhindi manar ahmed hamza Abdelwahed Motwakel Mohamed I.Eldesouki 《Computers, Materials & Continua》 SCIE EI 2023年第2期2725-2738,共14页
Data mining process involves a number of steps fromdata collection to visualization to identify useful data from massive data set.the same time,the recent advances of machine learning(ML)and deep learning(DL)models ca... Data mining process involves a number of steps fromdata collection to visualization to identify useful data from massive data set.the same time,the recent advances of machine learning(ML)and deep learning(DL)models can be utilized for effectual rainfall prediction.With this motivation,this article develops a novel comprehensive oppositionalmoth flame optimization with deep learning for rainfall prediction(COMFO-DLRP)Technique.The proposed CMFO-DLRP model mainly intends to predict the rainfall and thereby determine the environmental changes.Primarily,data pre-processing and correlation matrix(CM)based feature selection processes are carried out.In addition,deep belief network(DBN)model is applied for the effective prediction of rainfall data.Moreover,COMFO algorithm was derived by integrating the concepts of comprehensive oppositional based learning(COBL)with traditional MFO algorithm.Finally,the COMFO algorithm is employed for the optimal hyperparameter selection of the DBN model.For demonstrating the improved outcomes of the COMFO-DLRP approach,a sequence of simulations were carried out and the outcomes are assessed under distinct measures.The simulation outcome highlighted the enhanced outcomes of the COMFO-DLRP method on the other techniques. 展开更多
关键词 Data mining rainfall prediction deep learning correlation matrix hyperparameter tuning metaheuristics
下载PDF
Fusion-Based Deep Learning Model for Automated Forest Fire Detection
7
作者 Mesfer Al Duhayyim Majdy M.Eltahir +5 位作者 Ola Abdelgney Omer Ali Amani Abdulrahman Albraikan Fahd N.Al-Wesabi Anwer Mustafa Hilal manar ahmed hamza Mohammed Rizwanullah 《Computers, Materials & Continua》 SCIE EI 2023年第10期1355-1371,共17页
Earth resource and environmental monitoring are essential areas that can be used to investigate the environmental conditions and natural resources supporting sustainable policy development,regulatory measures,and thei... Earth resource and environmental monitoring are essential areas that can be used to investigate the environmental conditions and natural resources supporting sustainable policy development,regulatory measures,and their implementation elevating the environment.Large-scale forest fire is considered a major harmful hazard that affects climate change and life over the globe.Therefore,the early identification of forest fires using automated tools is essential to avoid the spread of fire to a large extent.Therefore,this paper focuses on the design of automated forest fire detection using a fusion-based deep learning(AFFD-FDL)model for environmental monitoring.The AFFDFDL technique involves the design of an entropy-based fusion model for feature extraction.The combination of the handcrafted features using histogram of gradients(HOG)with deep features using SqueezeNet and Inception v3 models.Besides,an optimal extreme learning machine(ELM)based classifier is used to identify the existence of fire or not.In order to properly tune the parameters of the ELM model,the oppositional glowworm swarm optimization(OGSO)algorithm is employed and thereby improves the forest fire detection performance.A wide range of simulation analyses takes place on a benchmark dataset and the results are inspected under several aspects.The experimental results highlighted the betterment of the AFFD-FDL technique over the recent state of art techniques. 展开更多
关键词 Environment monitoring remote sensing forest fire detection deep learning machine learning fusion model
下载PDF
Optimal Deep Learning Driven Intrusion Detection in SDN-Enabled IoT Environment
8
作者 Mohammed Maray Haya Mesfer Alshahrani +5 位作者 Khalid A.Alissa Najm Alotaibi Abdulbaset Gaddah AliMeree Mahmoud Othman manar ahmed hamza 《Computers, Materials & Continua》 SCIE EI 2023年第3期6587-6604,共18页
In recent years,wireless networks are widely used in different domains.This phenomenon has increased the number of Internet of Things(IoT)devices and their applications.Though IoT has numerous advantages,the commonly-... In recent years,wireless networks are widely used in different domains.This phenomenon has increased the number of Internet of Things(IoT)devices and their applications.Though IoT has numerous advantages,the commonly-used IoT devices are exposed to cyber-attacks periodically.This scenario necessitates real-time automated detection and the mitigation of different types of attacks in high-traffic networks.The Software-Defined Networking(SDN)technique and the Machine Learning(ML)-based intrusion detection technique are effective tools that can quickly respond to different types of attacks in the IoT networks.The Intrusion Detection System(IDS)models can be employed to secure the SDN-enabled IoT environment in this scenario.The current study devises a Harmony Search algorithmbased Feature Selection with Optimal Convolutional Autoencoder(HSAFSOCAE)for intrusion detection in the SDN-enabled IoT environment.The presented HSAFS-OCAE method follows a three-stage process in which the Harmony Search Algorithm-based FS(HSAFS)technique is exploited at first for feature selection.Next,the CAE method is leveraged to recognize and classify intrusions in the SDN-enabled IoT environment.Finally,the Artificial Fish SwarmAlgorithm(AFSA)is used to fine-tune the hyperparameters.This process improves the outcomes of the intrusion detection process executed by the CAE algorithm and shows the work’s novelty.The proposed HSAFSOCAE technique was experimentally validated under different aspects,and the comparative analysis results established the supremacy of the proposed model. 展开更多
关键词 Internet of things SDN controller feature selection hyperparameter tuning autoencoder
下载PDF
Automated Arabic Text Classification Using Hyperparameter Tuned Hybrid Deep Learning Model
9
作者 Badriyya B.Al-onazi Saud S.Alotaib +4 位作者 Saeed Masoud Alshahrani Najm Alotaibi Mrim M.Alnfiai ahmed S.Salama manar ahmed hamza 《Computers, Materials & Continua》 SCIE EI 2023年第3期5447-5465,共19页
The text classification process has been extensively investigated in various languages,especially English.Text classification models are vital in several Natural Language Processing(NLP)applications.The Arabic languag... The text classification process has been extensively investigated in various languages,especially English.Text classification models are vital in several Natural Language Processing(NLP)applications.The Arabic language has a lot of significance.For instance,it is the fourth mostly-used language on the internet and the sixth official language of theUnitedNations.However,there are few studies on the text classification process in Arabic.A few text classification studies have been published earlier in the Arabic language.In general,researchers face two challenges in the Arabic text classification process:low accuracy and high dimensionality of the features.In this study,an Automated Arabic Text Classification using Hyperparameter Tuned Hybrid Deep Learning(AATC-HTHDL)model is proposed.The major goal of the proposed AATC-HTHDL method is to identify different class labels for the Arabic text.The first step in the proposed model is to pre-process the input data to transform it into a useful format.The Term Frequency-Inverse Document Frequency(TF-IDF)model is applied to extract the feature vectors.Next,the Convolutional Neural Network with Recurrent Neural Network(CRNN)model is utilized to classify the Arabic text.In the final stage,the Crow Search Algorithm(CSA)is applied to fine-tune the CRNN model’s hyperparameters,showing the work’s novelty.The proposed AATCHTHDL model was experimentally validated under different parameters and the outcomes established the supremacy of the proposed AATC-HTHDL model over other approaches. 展开更多
关键词 Hybrid deep learning natural language processing arabic language text classification parameter tuning
下载PDF
Computational Linguistics with Optimal Deep Belief Network Based Irony Detection in Social Media
10
作者 manar ahmed hamza Hala J.Alshahrani +5 位作者 Abdulkhaleq Q.A.Hassan Abdulbaset Gaddah Nasser Allheeib Suleiman Ali Alsaif Badriyya B.Al-onazi Heba Mohsen 《Computers, Materials & Continua》 SCIE EI 2023年第5期4137-4154,共18页
Computational linguistics refers to an interdisciplinary field associated with the computational modelling of natural language and studying appropriate computational methods for linguistic questions.The number of soci... Computational linguistics refers to an interdisciplinary field associated with the computational modelling of natural language and studying appropriate computational methods for linguistic questions.The number of social media users has been increasing over the last few years,which have allured researchers’interest in scrutinizing the new kind of creative language utilized on the Internet to explore communication and human opinions in a betterway.Irony and sarcasm detection is a complex task inNatural Language Processing(NLP).Irony detection has inferences in advertising,sentiment analysis(SA),and opinion mining.For the last few years,irony-aware SA has gained significant computational treatment owing to the prevalence of irony in web content.Therefore,this study develops Computational Linguistics with Optimal Deep Belief Network based Irony Detection and Classification(CLODBN-IRC)model on social media.The presented CLODBN-IRC model mainly focuses on the identification and classification of irony that exists in social media.To attain this,the presented CLODBN-IRC model performs different stages of pre-processing and TF-IDF feature extraction.For irony detection and classification,the DBN model is exploited in this work.At last,the hyperparameters of the DBN model are optimally modified by improved artificial bee colony optimization(IABC)algorithm.The experimental validation of the presentedCLODBN-IRCmethod can be tested by making use of benchmark dataset.The simulation outcomes highlight the superior outcomes of the presented CLODBN-IRC model over other approaches. 展开更多
关键词 Computational linguistics natural language processing deep learning irony detection social media
下载PDF
Deep Consensus Network for Recycling Waste Detection in Smart Cities
11
作者 manar ahmed hamza Hanan Abdullah Mengash +3 位作者 Noha Negm Radwa Marzouk Abdelwahed Motwakel Abu Sarwar Zamani 《Computers, Materials & Continua》 SCIE EI 2023年第5期4191-4205,共15页
Recently,urbanization becomes a major concern for developing as well as developed countries.Owing to the increased urbanization,one of the important challenging issues in smart cities is waste management.So,automated ... Recently,urbanization becomes a major concern for developing as well as developed countries.Owing to the increased urbanization,one of the important challenging issues in smart cities is waste management.So,automated waste detection and classification model becomes necessary for the smart city and to accomplish better recyclable waste management.Effective recycling of waste offers the chance of reducing the quantity of waste disposed to the land fill by minimizing the requirement of collecting raw materials.This study develops a novel Deep Consensus Network with Whale Optimization Algorithm for Recycling Waste Object Detection(DCNWORWOD)in Smart Cities.The goal of the DCNWO-RWOD technique intends to properly identify and classify the objects into recyclable and non-recyclable ones.The proposed DCNWO-RWOD technique involves the design of deep consensus network(DCN)to detect waste objects in the input image.For improving the overall object detection performance of the DCN model,the whale optimization algorithm(WOA)is exploited.Finally,Na飗e Bayes(NB)classifier is used for the classification of detected waste objects into recyclable and non-recyclable ones.The performance validation of theDCNWO-RWOD technique takes place using the open access dataset.The extensive comparative study reported the enhanced performance of the DCNWO-RWOD technique interms of several measures. 展开更多
关键词 Smart city waste management object detection RECYCLING deep consensus network
下载PDF
Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition
12
作者 Mohammed Maray Badriyya B.Al-onazi +5 位作者 Jaber S.Alzahrani Saeed Masoud Alshahrani Najm Alotaibi Sana Alazwari Mahmoud Othman manar ahmed hamza 《Computers, Materials & Continua》 SCIE EI 2023年第3期5467-5482,共16页
The recognition of the Arabic characters is a crucial task incomputer vision and Natural Language Processing fields. Some major complicationsin recognizing handwritten texts include distortion and patternvariabilities... The recognition of the Arabic characters is a crucial task incomputer vision and Natural Language Processing fields. Some major complicationsin recognizing handwritten texts include distortion and patternvariabilities. So, the feature extraction process is a significant task in NLPmodels. If the features are automatically selected, it might result in theunavailability of adequate data for accurately forecasting the character classes.But, many features usually create difficulties due to high dimensionality issues.Against this background, the current study develops a Sailfish Optimizer withDeep Transfer Learning-Enabled Arabic Handwriting Character Recognition(SFODTL-AHCR) model. The projected SFODTL-AHCR model primarilyfocuses on identifying the handwritten Arabic characters in the inputimage. The proposed SFODTL-AHCR model pre-processes the input imageby following the Histogram Equalization approach to attain this objective.The Inception with ResNet-v2 model examines the pre-processed image toproduce the feature vectors. The Deep Wavelet Neural Network (DWNN)model is utilized to recognize the handwritten Arabic characters. At last,the SFO algorithm is utilized for fine-tuning the parameters involved in theDWNNmodel to attain better performance. The performance of the proposedSFODTL-AHCR model was validated using a series of images. Extensivecomparative analyses were conducted. The proposed method achieved a maximum accuracy of 99.73%. The outcomes inferred the supremacy of theproposed SFODTL-AHCR model over other approaches. 展开更多
关键词 Arabic language handwritten character recognition deep learning feature extraction hyperparameter tuning
下载PDF
Energy-Efficient Routing Using Novel Optimization with Tabu Techniques for Wireless Sensor Network
13
作者 manar ahmed hamza Aisha Hassan Abdalla Hashim +5 位作者 Dalia H.Elkamchouchi Nadhem Nemri Jaber S.Alzahrani Amira Sayed A.Aziz Mnahel ahmed Ibrahim Abdelwahed Motwakel 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1711-1726,共16页
Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in... Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in largescale wireless sensor networks is considered to be a difficult area in the research.Sensor node clustering is a popular approach for WSN.Moreover,the sensor nodes are grouped to form clusters in a cluster-based WSN environment.The battery performance of the sensor nodes is likewise constrained.As a result,the energy efficiency of WSNs is critical.In specific,the energy usage is influenced by the loads on the sensor node as well as it ranges from the Base Station(BS).Therefore,energy efficiency and load balancing are very essential in WSN.In the proposed method,a novel Grey Wolf Improved Particle Swarm Optimization with Tabu Search Techniques(GW-IPSO-TS)was used.The selection of Cluster Heads(CHs)and routing path of every CH from the base station is enhanced by the proposed method.It provides the best routing path and increases the lifetime and energy efficiency of the network.End-to-end delay and packet loss rate have also been improved.The proposed GW-IPSO-TS method enhances the evaluation of alive nodes,dead nodes,network survival index,convergence rate,and standard deviation of sensor nodes.Compared to the existing algorithms,the proposed method outperforms better and improves the lifetime of the network. 展开更多
关键词 Wireless sensor networks ENERGY-EFFICIENT load balancing energy consumption network’s lifetime cluster heads grey wolf optimization tabu search particle swarm optimization
下载PDF
Optimal Quad Channel Long Short-Term Memory Based Fake News Classification on English Corpus
14
作者 manar ahmed hamza Hala J.Alshahrani +5 位作者 Khaled Tarmissi Ayman Yafoz Amal S.Mehanna Ishfaq Yaseen Amgad Atta Abdelmageed Mohamed I.Eldesouki 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3303-3319,共17页
The term‘corpus’refers to a huge volume of structured datasets containing machine-readable texts.Such texts are generated in a natural communicative setting.The explosion of social media permitted individuals to spr... The term‘corpus’refers to a huge volume of structured datasets containing machine-readable texts.Such texts are generated in a natural communicative setting.The explosion of social media permitted individuals to spread data with minimal examination and filters freely.Due to this,the old problem of fake news has resurfaced.It has become an important concern due to its negative impact on the community.To manage the spread of fake news,automatic recognition approaches have been investigated earlier using Artificial Intelligence(AI)and Machine Learning(ML)techniques.To perform the medicinal text classification tasks,the ML approaches were applied,and they performed quite effectively.Still,a huge effort is required from the human side to generate the labelled training data.The recent progress of the Deep Learning(DL)methods seems to be a promising solution to tackle difficult types of Natural Language Processing(NLP)tasks,especially fake news detection.To unlock social media data,an automatic text classifier is highly helpful in the domain of NLP.The current research article focuses on the design of the Optimal Quad ChannelHybrid Long Short-Term Memory-based Fake News Classification(QCLSTM-FNC)approach.The presented QCLSTM-FNC approach aims to identify and differentiate fake news from actual news.To attain this,the proposed QCLSTM-FNC approach follows two methods such as the pre-processing data method and the Glovebased word embedding process.Besides,the QCLSTM model is utilized for classification.To boost the classification results of the QCLSTM model,a Quasi-Oppositional Sandpiper Optimization(QOSPO)algorithm is utilized to fine-tune the hyperparameters.The proposed QCLSTM-FNC approach was experimentally validated against a benchmark dataset.The QCLSTMFNC approach successfully outperformed all other existing DL models under different measures. 展开更多
关键词 English corpus fake news detection social media natural language processing artificial intelligence deep learning
下载PDF
Battle Royale Optimization with Fuzzy Deep Learning for Arabic Sentiment Classification
15
作者 manar ahmed hamza Hala J.Alshahrani +3 位作者 Jaber S.Alzahrani Heba Mohsen Mohamed I.Eldesouki Mohammed Rizwanullah 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2619-2635,共17页
Aspect-Based Sentiment Analysis(ABSA)on Arabic corpus has become an active research topic in recent days.ABSA refers to a fine-grained Sentiment Analysis(SA)task that focuses on the extraction of the conferred aspects... Aspect-Based Sentiment Analysis(ABSA)on Arabic corpus has become an active research topic in recent days.ABSA refers to a fine-grained Sentiment Analysis(SA)task that focuses on the extraction of the conferred aspects and the identification of respective sentiment polarity from the provided text.Most of the prevailing Arabic ABSA techniques heavily depend upon dreary feature-engineering and pre-processing tasks and utilize external sources such as lexicons.In literature,concerning the Arabic language text analysis,the authors made use of regular Machine Learning(ML)techniques that rely on a group of rare sources and tools.These sources were used for processing and analyzing the Arabic language content like lexicons.However,an important challenge in this domain is the unavailability of sufficient and reliable resources.In this background,the current study introduces a new Battle Royale Optimization with Fuzzy Deep Learning for Arabic Aspect Based Sentiment Classification(BROFDL-AASC)technique.The aim of the presented BROFDL-AASC model is to detect and classify the sentiments in the Arabic language.In the presented BROFDL-AASC model,data pre-processing is performed at first to convert the input data into a useful format.Besides,the BROFDL-AASC model includes Discriminative Fuzzy-based Restricted Boltzmann Machine(DFRBM)model for the identification and categorization of sentiments.Furthermore,the BRO algorithm is exploited for optimal fine-tuning of the hyperparameters related to the FBRBM model.This scenario establishes the novelty of current study.The performance of the proposed BROFDL-AASC model was validated and the outcomes demonstrate the supremacy of BROFDL-AASC model over other existing models. 展开更多
关键词 Arabic corpus aspect based sentiment analysis arabic language deep learning battle royale optimization natural language processing
下载PDF
Enhanced Gorilla Troops Optimizer with Deep Learning Enabled Cybersecurity Threat Detection
16
作者 Fatma S.Alrayes Najm Alotaibi +5 位作者 Jaber S.Alzahrani Sana Alazwari Areej Alhogail Ali M.Al-Sharafi Mahmoud Othman manar ahmed hamza 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期3037-3052,共16页
Recent developments in computer networks and Internet of Things(IoT)have enabled easy access to data.But the government and business sectors face several difficulties in resolving cybersecurity network issues,like nov... Recent developments in computer networks and Internet of Things(IoT)have enabled easy access to data.But the government and business sectors face several difficulties in resolving cybersecurity network issues,like novel attacks,hackers,internet criminals,and so on.Presently,malware attacks and software piracy pose serious risks in compromising the security of IoT.They can steal confidential data which results infinancial and reputational losses.The advent of machine learning(ML)and deep learning(DL)models has been employed to accomplish security in the IoT cloud environment.This article pre-sents an Enhanced Artificial Gorilla Troops Optimizer with Deep Learning Enabled Cybersecurity Threat Detection(EAGTODL-CTD)in IoT Cloud Net-works.The presented EAGTODL-CTD model encompasses the identification of the threats in the IoT cloud environment.The proposed EAGTODL-CTD mod-el mainly focuses on the conversion of input binaryfiles to color images,where the malware can be detected using an image classification problem.The EAG-TODL-CTD model pre-processes the input data to transform to a compatible for-mat.For threat detection and classification,cascaded gated recurrent unit(CGRU)model is exploited to determine class labels.Finally,EAGTO approach is employed as a hyperparameter optimizer to tune the CGRU parameters,showing the novelty of our work.The performance evaluation of the EAGTODL-CTD model is assessed on a dataset comprising two class labels namely malignant and benign.The experimental values reported the supremacy of the EAG-TODL-CTD model with increased accuracy of 99.47%. 展开更多
关键词 CYBERSECURITY computer networks threat detection internet of things cloud computing deep learning
下载PDF
IoT-Driven Optimal Lightweight RetinaNet-Based Object Detection for Visually Impaired People
17
作者 Mesfer Alduhayyem Mrim M.Alnfiai +3 位作者 Nabil Almalki Fahd N.Al-Wesabi Anwer Mustafa Hilal manar ahmed hamza 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期475-489,共15页
Visual impairment is one of the major problems among people of all age groups across the globe.Visually Impaired Persons(VIPs)require help from others to carry out their day-to-day tasks.Since they experience several ... Visual impairment is one of the major problems among people of all age groups across the globe.Visually Impaired Persons(VIPs)require help from others to carry out their day-to-day tasks.Since they experience several problems in their daily lives,technical intervention can help them resolve the challenges.In this background,an automatic object detection tool is the need of the hour to empower VIPs with safe navigation.The recent advances in the Internet of Things(IoT)and Deep Learning(DL)techniques make it possible.The current study proposes IoT-assisted Transient Search Optimization with a Lightweight RetinaNetbased object detection(TSOLWR-ODVIP)model to help VIPs.The primary aim of the presented TSOLWR-ODVIP technique is to identify different objects surrounding VIPs and to convey the information via audio message to them.For data acquisition,IoT devices are used in this study.Then,the Lightweight RetinaNet(LWR)model is applied to detect objects accurately.Next,the TSO algorithm is employed for fine-tuning the hyperparameters involved in the LWR model.Finally,the Long Short-Term Memory(LSTM)model is exploited for classifying objects.The performance of the proposed TSOLWR-ODVIP technique was evaluated using a set of objects,and the results were examined under distinct aspects.The comparison study outcomes confirmed that the TSOLWR-ODVIP model could effectually detect and classify the objects,enhancing the quality of life of VIPs. 展开更多
关键词 Visually impaired people deep learning object detection computer vision long short-term memory transient search optimization
下载PDF
Improved Attentive Recurrent Network for Applied Linguistics-Based Offensive Speech Detection
18
作者 manar ahmed hamza Hala J.Alshahrani +5 位作者 Khaled Tarmissi Ayman Yafoz Amira Sayed A.Aziz Mohammad Mahzari Abu Sarwar Zamani Ishfaq Yaseen 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1691-1707,共17页
Applied linguistics is one of the fields in the linguistics domain and deals with the practical applications of the language studies such as speech processing,language teaching,translation and speech therapy.The ever-... Applied linguistics is one of the fields in the linguistics domain and deals with the practical applications of the language studies such as speech processing,language teaching,translation and speech therapy.The ever-growing Online Social Networks(OSNs)experience a vital issue to confront,i.e.,hate speech.Amongst the OSN-oriented security problems,the usage of offensive language is the most important threat that is prevalently found across the Internet.Based on the group targeted,the offensive language varies in terms of adult content,hate speech,racism,cyberbullying,abuse,trolling and profanity.Amongst these,hate speech is the most intimidating form of using offensive language in which the targeted groups or individuals are intimidated with the intent of creating harm,social chaos or violence.Machine Learning(ML)techniques have recently been applied to recognize hate speech-related content.The current research article introduces a Grasshopper Optimization with an Attentive Recurrent Network for Offensive Speech Detection(GOARN-OSD)model for social media.The GOARNOSD technique integrates the concepts of DL and metaheuristic algorithms for detecting hate speech.In the presented GOARN-OSD technique,the primary stage involves the data pre-processing and word embedding processes.Then,this study utilizes the Attentive Recurrent Network(ARN)model for hate speech recognition and classification.At last,the Grasshopper Optimization Algorithm(GOA)is exploited as a hyperparameter optimizer to boost the performance of the hate speech recognition process.To depict the promising performance of the proposed GOARN-OSD method,a widespread experimental analysis was conducted.The comparison study outcomes demonstrate the superior performance of the proposed GOARN-OSD model over other state-of-the-art approaches. 展开更多
关键词 Applied linguistics hate speech offensive language natural language processing deep learning grasshopper optimization algorithm
下载PDF
Differential Evolution with Arithmetic Optimization Algorithm Enabled Multi-Hop Routing Protocol
19
作者 manar ahmed hamza Haya Mesfer Alshahrani +5 位作者 Sami Dhahbi Mohamed K Nour Mesfer Al Duhayyim ElSayed M.Tag El Din Ishfaq Yaseen Abdelwahed Motwakel 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1759-1773,共15页
Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is chall... Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is challenging to design energy-efficient WSN.The routing approaches are leveraged to reduce the utilization of energy and prolonging the lifespan of network.In order to solve the restricted energy problem,it is essential to reduce the energy utilization of data,transmitted from the routing protocol and improve network development.In this background,the current study proposes a novel Differential Evolution with Arithmetic Optimization Algorithm Enabled Multi-hop Routing Protocol(DEAOA-MHRP)for WSN.The aim of the proposed DEAOA-MHRP model is select the optimal routes to reach the destination in WSN.To accomplish this,DEAOA-MHRP model initially integrates the concepts of Different Evolution(DE)and Arithmetic Optimization Algorithms(AOA)to improve convergence rate and solution quality.Besides,the inclusion of DE in traditional AOA helps in overcoming local optima problems.In addition,the proposed DEAOA-MRP technique derives a fitness function comprising two input variables such as residual energy and distance.In order to ensure the energy efficient performance of DEAOA-MHRP model,a detailed comparative study was conducted and the results established its superior performance over recent approaches. 展开更多
关键词 Wireless sensor network ROUTING multihop communication arithmetic optimization algorithm fitness function
下载PDF
Cat and Mouse Optimizer with Artificial Intelligence Enabled Biomedical Data Classification
20
作者 B.Kalpana S.Dhanasekaran +4 位作者 T.Abirami Ashit Kumar Dutta Marwa Obayya Jaber S.Alzahrani manar ahmed hamza 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2243-2257,共15页
Biomedical data classification has become a hot research topic in recent years,thanks to the latest technological advancements made in healthcare.Biome-dical data is usually examined by physicians for decision making ... Biomedical data classification has become a hot research topic in recent years,thanks to the latest technological advancements made in healthcare.Biome-dical data is usually examined by physicians for decision making process in patient treatment.Since manual diagnosis is a tedious and time consuming task,numerous automated models,using Artificial Intelligence(AI)techniques,have been presented so far.With this motivation,the current research work presents a novel Biomedical Data Classification using Cat and Mouse Based Optimizer with AI(BDC-CMBOAI)technique.The aim of the proposed BDC-CMBOAI technique is to determine the occurrence of diseases using biomedical data.Besides,the proposed BDC-CMBOAI technique involves the design of Cat and Mouse Optimizer-based Feature Selection(CMBO-FS)technique to derive a useful subset of features.In addition,Ridge Regression(RR)model is also utilized as a classifier to identify the existence of disease.The novelty of the current work is its designing of CMBO-FS model for data classification.Moreover,CMBO-FS technique is used to get rid of unwanted features and boosts the classification accuracy.The results of the experimental analysis accomplished by BDC-CMBOAI technique on benchmark medical dataset established the supremacy of the proposed technique under different evaluation measures. 展开更多
关键词 Artificial intelligence biomedical data feature selection cat and mouse optimizer ridge regression
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部