In this paper, thermoluminescence (TL) properties of rare earth Tb^3+-doped α-Sr2P2O7 were examined after β-irradiation and photoluminescence (PL) properties of samples were examined for proper excitation. All ...In this paper, thermoluminescence (TL) properties of rare earth Tb^3+-doped α-Sr2P2O7 were examined after β-irradiation and photoluminescence (PL) properties of samples were examined for proper excitation. All the samples were synthesized by high-temperature combustion method. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy characterization confirms the formation of pure α-phase with crystallized in orthorhombic structure of samples. The PL emission spectra of all samples exhibit characteristic green emission peaks of Tb^3+ where the peak at 545 nm has the highest emission intensity for Tb^3+ con- centration of 5.0 mol%. The TL glow curves of β-irradiated Tb^3+-doped α-Sr2P2O7 phosphors were recorded at different heating rates of 2, 4, and 6 K.s^-1. TL curves of all sample exhibit combination of two peaks: peak at 420 K shifts toward higher 525 K remains unaffected temperature, while peak at with the increase in Tb^3+ concentration as well as fading effect. The activation energy and kinetic parameters of the samples were evaluated using thermoluminescence peak shape method.展开更多
文摘In this paper, thermoluminescence (TL) properties of rare earth Tb^3+-doped α-Sr2P2O7 were examined after β-irradiation and photoluminescence (PL) properties of samples were examined for proper excitation. All the samples were synthesized by high-temperature combustion method. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy characterization confirms the formation of pure α-phase with crystallized in orthorhombic structure of samples. The PL emission spectra of all samples exhibit characteristic green emission peaks of Tb^3+ where the peak at 545 nm has the highest emission intensity for Tb^3+ con- centration of 5.0 mol%. The TL glow curves of β-irradiated Tb^3+-doped α-Sr2P2O7 phosphors were recorded at different heating rates of 2, 4, and 6 K.s^-1. TL curves of all sample exhibit combination of two peaks: peak at 420 K shifts toward higher 525 K remains unaffected temperature, while peak at with the increase in Tb^3+ concentration as well as fading effect. The activation energy and kinetic parameters of the samples were evaluated using thermoluminescence peak shape method.