Microfluid chips integrating with organic electrochemical transistors (OECTs) are useful for manufacturing biosensors with high throughput and large-scale analyses. We report here the utilization of alternating curren...Microfluid chips integrating with organic electrochemical transistors (OECTs) are useful for manufacturing biosensors with high throughput and large-scale analyses. We report here the utilization of alternating current (AC) electrodeposition to fabricate OECTs in situ on a microfiuid chip. With this method, the organic semiconductor (OS) layer with a channel length of 8μm was readily prepared without requiring the postbonding process in the conventional construction of microfluidic chips. Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/graphene quantum dots (PEDOT:PSS/GQDs) composites with different morphologies, such as microfilms, nanodendrites and nanowires were electropolymerized. The mass transfer process of the electropolymerization reaction was evidenced to be diffusion limited. Morphologies, growth directions, and chemical structures of OS layers could be tuned by the amplitude and the frequency of the AC voltage. Transfer and output characteristic curves of OECTs were measured on the microfluidic chip. The maximum transconductance, on/off current ratio and threshold voltage measured in the experiment was 1.58 mS, 246, and 0.120 V, respectively.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51705354, 51622507, and 61671271)Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (Nos.183290224-S and 201802029).
文摘Microfluid chips integrating with organic electrochemical transistors (OECTs) are useful for manufacturing biosensors with high throughput and large-scale analyses. We report here the utilization of alternating current (AC) electrodeposition to fabricate OECTs in situ on a microfiuid chip. With this method, the organic semiconductor (OS) layer with a channel length of 8μm was readily prepared without requiring the postbonding process in the conventional construction of microfluidic chips. Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/graphene quantum dots (PEDOT:PSS/GQDs) composites with different morphologies, such as microfilms, nanodendrites and nanowires were electropolymerized. The mass transfer process of the electropolymerization reaction was evidenced to be diffusion limited. Morphologies, growth directions, and chemical structures of OS layers could be tuned by the amplitude and the frequency of the AC voltage. Transfer and output characteristic curves of OECTs were measured on the microfluidic chip. The maximum transconductance, on/off current ratio and threshold voltage measured in the experiment was 1.58 mS, 246, and 0.120 V, respectively.