期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ultrasmall high-entropy alloy nanoparticles on hierarchical N-doped carbon nanocages for tremendous electrocatalytic hydrogen evolution
1
作者 manman jia Jietao jiang +4 位作者 Jingyi Tian Xizhang Wang Lijun Yang Qiang Wu Zheng Hu 《Nano Research》 SCIE EI CSCD 2024年第11期9518-9524,共7页
High-entropy alloys (HEAs) are promising candidates for the electrocatalyst of hydrogen evolution reaction (HER) due to their unique properties such as cocktail electronic effect and lattice distortion effect. Herein,... High-entropy alloys (HEAs) are promising candidates for the electrocatalyst of hydrogen evolution reaction (HER) due to their unique properties such as cocktail electronic effect and lattice distortion effect. Herein, the ultrasmall (sub-2 nm) nanoparticles of PtRuCoNiCu HEA with uniform element distribution are highly dispersed on hierarchical N-doped carbon nanocages (hNCNC) via low-temperature thermal reduction, denoted as us-HEA/hNCNC. The optimal us-HEA/hNCNC exhibits excellent HER performance in 0.5 M H_(2)SO4 solution, achieving an ultralow overpotential of 19 mV at 10 mA·cm^(−2) (without iR-compensation), high mass activity of 13.1 A·mgnoble metals ^(−1) at −0.10 V and superb stability with a slight overpotential increase of 3 mV after 20,000 cycles of cyclic voltammetry scans, much superior to the commercial Pt/C (20 wt.%). The combined experimental and theoretical studies reveal that the Pt&Ru serve as the main active sites for HER and the CoNiCu species modify the electron density of active sites to facilitate the H* adsorption and achieve an optimum M-H binding energy. The hierarchical pore structure and N-doping of hNCNC support also play a crucial role in the enhancement of HER activity and stability. This study demonstrates an effective strategy to greatly improve the HER performance of noble metals by developing the HEAs on the unique hNCNC support. 展开更多
关键词 high-entropy alloys acidic hydrogen evolution ultrasmall nanoparticles hierarchical carbon nanocages high activity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部