期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Gravity Modeling for the Rifted Crust at the Arabian Shield Margin – Further Insight into Red Sea Spreading
1
作者 Saad Mogren manoj mukhopadhyay 《Open Journal of Geology》 2013年第2期28-33,共6页
A large variation in elevation and gravity anomaly prevails from the Red Sea coast to the interior of the Arabian Shield (AS) across the Asir Igneous Province (AIP);The Asir Mountain (AM) is developed on AIP. Here the... A large variation in elevation and gravity anomaly prevails from the Red Sea coast to the interior of the Arabian Shield (AS) across the Asir Igneous Province (AIP);The Asir Mountain (AM) is developed on AIP. Here the elevation varies from 45 - 2700 m, corresponding changes in F.A. are from –30 to + 220 mgal and B.A. from +22 to –175 mgal. Regression relationships between elevation and gravity anomalies demonstrate significant changes in trend at about 400 m threshold of elevation across the pediment west of AM, at about 45 km inland of the shoreline, flanking the Hizaz-Asir Escarpment (HAE). Gravity anomaly variation along a traverse taken across HAE and AIP is interpreted here in terms of anomalous masses in crust as well as due to deeper crustal configuration. 2D gravity interpretation is, in part, constrained by surface geology, available geologic cross-sections for crust, interpretations from the IRIS Deep-Seismic Refraction Line, and to a lesser extent by the available gross results from shear-wave splitting and receiver function analysis. The gravity model provides probable solutions for the first time on geometric configuration and geophysical identification: a) for the seaward margin of the mid-Tertiary Mafic Crust (TMC) below sediment cover of the Asir pediment that coincides with the 400 m threshold elevation. This signifies an anomalous uplift at the rifting phase. Moho below TMC extends from 10 - 22 km depth across HAE and west margin of AIP, b). Thinned continental crust below the Asir margin whose upper layer coincides with a seismic reflector is at about 22 km depth, c). Rift-margin characteristic detachment fault associated with basaltic flows on top surface of TMC at its inner margin, d). Two geologically mapped low-angle normal faults dipping to the east developed between the basic rocks intruding the AIP and e). felsic pluton farther east within AS. Large scale igneous activity followed by intense deformation affecting AIP clearly owes their origin to the rifting architecture of the AS at the Red Sea extensional margin. 展开更多
关键词 Shield-margin MAFIC CRUST Asir IGNEOUS Province Seismic MOHO 2D Gravity CRUSTAL Model Red Sea Ex-tensional MARGIN
下载PDF
Reconnaissance investigation of geothermal resources in parts of the Middle Benue Trough, Nigeria using remote sensing and geophysical methods
2
作者 Tochukwu Ngene manoj mukhopadhyay Suame Ampana 《Energy Geoscience》 2022年第4期360-371,共12页
In Nigeria,the basement complex and the sedimentary basins house many thermal springs which are physical manifestations of geothermal energy.However,there are difficulties in accessing the sustain-ability of these res... In Nigeria,the basement complex and the sedimentary basins house many thermal springs which are physical manifestations of geothermal energy.However,there are difficulties in accessing the sustain-ability of these resources due to ethical and security issues as well as limited data in Nigeria.Thus,identifying the precise location,temperature,and energy potential on a large scale has been a major drawback.This paper is the preliminary investigation of geothermal potential in parts of the Middle Benue Trough using satellite imagery,geology,regional gravity,and high-resolution aeromagnetic data.Landsat 8 scene was used to estimate the Land Surface Temperature(LST)in ArcGIS^(TM).Selected sites were classified as very low,low,moderate,and high LST.The intermediate and high classes happen to be possible geothermal zones,and they occupy 49% of the study area(38,077 km^(2)).The Riverline was superimposed on the LST,and the high-temperature sites were located by the identification tool.Streams/river data overlapped on the selected sites were regarded as thermal/warm springs.Remarkably,the LST results show lower temperatures(<36℃)at the famous thermal springs(Awe and Wukari)than some unknown rivers/streams found in Kwande(38℃),Ussa,(38℃),Gwer East(37℃),Yola Cross and Ogoja(36℃).Furthermore,the geophysical datasets,regional gravity,and high-resolution aeromagnetic data were interpolated to delineate the subsurface features associated with geothermal manifestations.The four layers from the LST were further evaluated using the geophysical approach.Gravity and mag-netic values revealed variations that could be linked to geothermal alterations.The correlation of the geophysical anomalies and LST with the geology of the study area uncovers essential information on energy potentials.Therefore,further investigation is required to estimate the depth of the causative body,the geothermal gradients,and the reservoir volumes. 展开更多
关键词 ARCMAP Gravity and magnetic methods Geothermal resources Landsat 8 Land surface temperature
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部