With advent of servo-controlled stiff testing machines, it is now possible to conduct tests on a rock in the laboratory under different variable controlled conditions. In this paper, cyclic fatigue behaviour of intact...With advent of servo-controlled stiff testing machines, it is now possible to conduct tests on a rock in the laboratory under different variable controlled conditions. In this paper, cyclic fatigue behaviour of intact sandstone obtained from the rock burst prone coal mine in the Czech Republic were presented. Tests were conducted on MTS- 816 rock test system in the laboratory on intact rock samples of L/D ratio 2 under cyclic loading frequency of 0.1, 1, 3, 5, 7 and 10 Hz at amplitude of 0.1 mm under displacement control mode until failure of the samples in uni-axial compression. From, the primary results it was observed that at low loading frequency range of 0.1 to 3 Hz, there was degradation of the rock samples in terms of fatigue strength and modulus. While, at higher frequency rose-up in strength and deformation properties were observed. It was observed that the machine behaviour in terms of amplitude at higher loading frequencies might be affecting the results. It seemed that machine behaviour of servo-hydraulic testing system was also dependent on rock type under investigation.展开更多
基金performed with financial grant No.105/01/0042 from Grant Agency of the Czech Republic
文摘With advent of servo-controlled stiff testing machines, it is now possible to conduct tests on a rock in the laboratory under different variable controlled conditions. In this paper, cyclic fatigue behaviour of intact sandstone obtained from the rock burst prone coal mine in the Czech Republic were presented. Tests were conducted on MTS- 816 rock test system in the laboratory on intact rock samples of L/D ratio 2 under cyclic loading frequency of 0.1, 1, 3, 5, 7 and 10 Hz at amplitude of 0.1 mm under displacement control mode until failure of the samples in uni-axial compression. From, the primary results it was observed that at low loading frequency range of 0.1 to 3 Hz, there was degradation of the rock samples in terms of fatigue strength and modulus. While, at higher frequency rose-up in strength and deformation properties were observed. It was observed that the machine behaviour in terms of amplitude at higher loading frequencies might be affecting the results. It seemed that machine behaviour of servo-hydraulic testing system was also dependent on rock type under investigation.